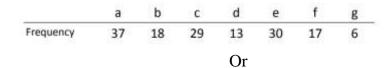
С		Reg. No. :			
		Question Pap	per Code:5320	2	
	B.E ./	B.Tech. DEGREE EX	XAMINATION, A	PRIL 2019	
		Third	Semester		
		Computer Scie	ence Engineering		
		15UCS302 -DA	TA STRUCTURES	5	
		(Regula	ation 2015)		
Dura	ation: Three hours			Maximum: 10	00 Marks
		Answer Al	LL Questions		
		PART A - (5	x 1 = 5 Marks)		
1.	the maximum numb	ch if all its levels except possibly the last, have ber of nodes and all the nodes at the last level possible, is known as			CO1
	(a) Full binary tree.	(b) AVL tree. (c	c) Threaded tree.	(d)Complete bina	ary tree.
2.	The order of a B-Tronode is	ee with 2, 3, 4 or 5 c	children in every in	nternal	CO2
	(a) 2	(b)3	(c)4	(d)5	
3.	In a max-heap, element with the greatest key is always in CO3-				
	(a) Leaf node (b) First node of left sub tree				
	(c) Root node (d) First node of right sub tree				
4.	If h is any hashing function and is used to hash n keys in to a table of size m, where $n \le m$, the expected number of collisions involving a particular key x is				CO4
	(a) less than 1.	(b) less than n.	(c) less than r	n. (d) less	than n/2.
5.	The spanning tree of connected graph with 10 vertices contains				
	(a) 11 edges	(b) 9 edges	(c) 10 edges	(d)9ver	tices
		PART – B (5	5 x 3= 15Marks)		
6.	What are threaded binary trees? Explain inorder threading using an example. CO1-				
7.	Define B-tree of order m? When is it preferred to use B-trees? CO2				

11. (a) (i) Construct a binary tree whose nodes in inorder and preorder CO1- U (12)are given as follows: **Inorder**: 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50 **Preorder**: 20, 15, 10, 18, 17, 30, 25, 40, 35, 38, 50. (ii) Write short notes on leaf and Non-leaf nodes. CO1- U (4)Or (b) (i) Give the in order, preorder and post order sequences for the CO1- App (8)given tree. в G (ii) Summarize the concept of threaded binary tree. CO1-U (8)12. (a) (i) Show the result of inserting values 9 2 90 53 4 64 95 59 CO2-U (8) into an empty splay tree. Show the tree at the end of each insertion. Show each rotation..

(ii) Make a BST for the following sequence of numbers. 45, CO2-U (8)
36, 76, 23, 89, 115, 98, 39, 41, 56, 69, 48. Traverse the tree in
Preorder, Inorder and postorder.

Or

(b) Define balance factor. Explain the types of rotations in AVL CO2-U (16) tree with suitable example.


2

9. Explain extendible hashing with an example.

10. Compare BFS and DFS.

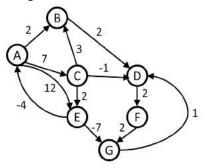
PART – C (5 x 16= 80Marks)

CO4- R CO5- R 13. (a) Construct a Huffman tree for the codes a, b,..., g occurring CO3-U (16) with the following frequencies:

(b) (i) Build a Huffman tree from the following frequency table: CO3- App (10)

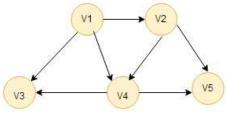
А	.20
В	.04
С	.07
D	.11
Е	.32
F	.06
G	.05
Н	.15

(ii) Write short notes on game tree

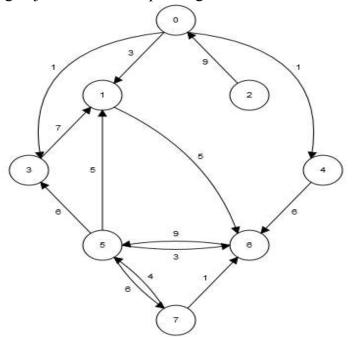

14. (a) Perform the operations given below, in the given order, on an CO4-U (16) initially empty hash table of size 13using linear probing with c(i) = iand the hash function: h(key) = key % 13: insert(18), insert(26), insert(35), insert(9), find(15), find(48), delete(35), delete(40), find(9), insert(64), insert(47), find(35)

Or

(b) (i) Draw the 11-item hash table resulting from hashing the CO4- App (8) keys 12,44,13,88,23,94,11,39,20,16 and 5 using the hash function h(i) = (2i+5) mod 11.


(ii) Load the keys 23,13,21,14,7,8 and 15 in a hash table of CO4- App
(8) size 7 using separate chaining with a hash function h(key)= key %7.

15. (a) (i) Execute Dijkstra's algorithm on the following graph CO5- App (8) assuming the source vertex to be A, find the shortest path to all the remaining vertices.


CO3- U

(6)

(b) Find out the shortest path from vertex '0' to all other vertices CO5- App (16) using Dijkstra's shortest path algorithm.

