(b) Full binary tree

(d) Binary search tree

Question Paper Code: 43223

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Third Semester

Electronics and Communication Engineering

14UCS323 - DATA STRUCTURES AND ALGORITHM ANALYSIS

(Regulation 2014)

Duration: Three hours		Maxim	Maximum: 100 Marks			
		Answer ALL	Questions			
		PART A - (10 x 1	= 10 Marks)			
1.	Format flags may be con	mbined using				
	(a) The bitwise OR	()	(b) The logical (OR ()		
	(c) The bitwise AND (&)		(d) The logical A	(d) The logical AND (&&)		
2.	The use of the break statement in a switch statement is					
	(a) Optional		(b) Compulsory	(b) Compulsory		
	(c) Not allowed		(d) To check an	error		
3.	If you design a class that needs special initialization tasks, you want to design a(n)					
	(a) Housekeeping routine		(b) Initializer	(b) Initializer		
	(c) Constructor		(d) Compiler			
4.	inheritance uses both multiple and multilevel inheritance					
	(a) Hierarchial	(b) Hybrid	(c) Single	(d) Multipath		
5.	A heap is a					

(a) Binary tree

(c) Complete binary tree

6.	5. In the following which is open addressing hashing mechanism?							
	(a) Separate chaining(c) Rehashing	(b) Double hashing(d) Extensible hashing						
7.	7. Binary tree has <i>N</i> number of nodes with two children. How many leaf nodes are avin a tree?							
	(a) $N+2$ (b) $N!$	(c) <i>N</i> +1	(d) logN					
8.	The classic example for NP-complete p	problem is						
	(a) Dijikstra's algorithm(c) Travelling salesman problem	(b) Floyds algorithm(d) None of these	n					
9.	9. The running time of the shell sort using hibbard increment							
	(a) N^2 (b) $N^{3/2}$	(c) N^3	(d) N ^N					
10.	Which of the following algorithm design	gn technique is used fo	or matrix multiplication?					
	(a) Divide and Conquer(c) Greedy algorithm	(b) Dynamic Progra(d) Backtracking	amming					
	PART - I	$3 (5 \times 2 = 10 \text{ Marks})$						
11.	What are the ways in which a construc	tor can be called?						
12.	What is the purpose of virtual function	s?						
13.	List the applications of a stack.							
14.	Define minimum spanning tree.							
15.	Explain the performance analysis of the	e algorithm.						
	PART - C	$C(5 \times 16 = 80 \text{ Marks})$						
16.	ramming languages.	(10)						
	(ii) Write a program to calculat function overloading.	te the area of circle,	triangle, and rectangle	using (6)				
		Or						
	(b) Define constructor. Explain types of	of constructor with exa	ample in C++.	(16)				

17.	(a)	(i) Write a C++ program to concatenate two strings by operator overloading.	(8)						
		(ii) Explain about function templates with multiple arguments.	(8)						
	Or								
	b)	(i) Write a program to implement the class template for Queue operations. (1	.0)						
		(ii) What is meant by exceptions? How an exception is handled in C++? Explain we the help of an example.	ith (6)						
18.	(a)	a) Explain with an example the formation of heap data structure and the properties t found in a heap.							
		Or							
	(b)	(i) Write a procedure to insert a new node in binary heaps.	(6)						
		(ii) Given input $\{1, 64, 25, 16, 49, 4, 9.36, 81\}$ and a hash function $h(x) = x \pmod{10}$, show the resulting: (i) open hash table (ii) closed hash table using linear probing (iii) closed hash table using quadratic probing (iv) closed hash table with second hash function $h2(x) = 7 - (x \mod 7)$. (10)							
19.	(a)	Write routines to implement the basic Binary search tree operations							
		(i) Insert 3, 1, 4, 6, 9, 2, 5, 7 into an initially empty Binary search tree	(6)						
		(ii) Delete element '4' from the tree	(6)						
		(iii) Return the greatest element in the tree.	(4)						
	Or								
	(b)	Explain AVL tree with suitable example. (1	16)						
20.	(a)	Write a program to explain bubble sort. Which type of technique does it belong? What is the worst case and best case time complexity of bubble sort? (1	t 16)						
		Or							
(b)	(i)	Which sorting algorithm is best suited for a partially sorted list? Give an example.	(8)						
	(ii)	How will you find the shortest path between every pair of vertices in a given graph? Give example.	(8)						