Reg. No.:					

Question Paper Code: 46203

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Sixth Semester

Computer Science and Engineering

14UCS603 - ARTIFICIAL INTELLIGENCE

	(Regulati	on 2014)	
Duration: Three hours	S		Maximum: 100 Marks
	Answer AL	L Questions	
	PART A - (10)	x 1 = 10 Marks)	
1. An agent that can	take the right decision in	every situation is	
(a) Local age	nt (b) Rational agent	
(c) Logical ag	gent (d) Intelligent agent	
2. Which instrument	s are used for perceiving	and acting upon the er	nvironment
(a) Sensors an(c) Perceiver	`	b) Sensors d) None of these	
3. Which mechanism i	is applied to use a design	pattern in an OO syste	em?
(a) Inheritance	e (b) Composition	
(c) Coupling	(d) None of these	
4. Which is not a typ	e of First Order Logic (F	FOL) Sentence?	
(a) Atomic se	entences (b) Complex sentences	
(c) Quantified	d sentence (d) Quality Sentence	
5 plann	ning checks what is	actually happening in	n the environment at

(b) Replanning

(d) Conditional planning

predetermined plans.

(a) Continuous planning

(c) Multiagent planning

6.	planning checks what i	s actually happening in the environment	at
	predetermined plans.		
	(a) Continuous planning	(b) Replanning	
	(c) Multiagent planning	(d) Conditional planning	
7.	state is a representation o	f the probabilities of all possible actual state	s of
the	world.		
	(a) Belief state	(b) Consistent state	
	(c) Inconsistent state	(d) Transition state	
8.	A* algorithm is based on		
	(a) Breadth-First-Search	(b) Depth-First –Search	
	(c) Best-First-Search	(d) Hill climbing	
9.	Automated vehicle is an example of		
	(a) Supervised learning	(b) Unsupervised learning	
	(c) Active learning	(d) Reinforcement learning	
10.	Automated vehicle is an example of		
	(a) Supervised learning	(b) Unsupervised learning	
	(c) Active learning	(d) Reinforcement learning	
	PART - B ($5 \times 2 = 10 \text{ Marks}$	
11.	What are the four components of definit	ng a problem?	
12.	Write the BNF grammar of sentences in	propositional logic.	
13.	Annotate the conditions of a mutex relativel?	tion that holds between two actions at a given	
14.	What is fuzzy logic? What is its use?		
15.	What is learning? What are its types?		
	PART - C (5	x 16 = 80 Marks	
16.	(a) (i) Discuss the properties of task ex	nvironment.	(8)
	(ii) Illustrate Breadth First Search v	vith suitable example.	(8)

Or

(b) Expla	in the approach of formulation for constraint satisfaction problems with	
example	2.	(16)
17. (a) Ex	xplain the forward chaining process and efficient forward chaining with ex	ample. (16)
	Or	
(b) (i)	Describe forward chaining and backward chaining algorithm.	(8)
(ii)	Write short note on unification.	(8)
18. (a) Elu	ucidate partial order planning with suitable example.	(16)
	Or	
	plain the use of planning graph in providing better heuristic estimation itable example.	on with (16)
19. (a) Dis	scuss the design issues to be solved to use HMM for real world app	lication. (16)
	Or	
(b) Ex	plain the method of performing exact inference in Bayesian networks.	(10)
20. (a) (i)	Explain decision tree learning machine.	(8)
(ii)	Discuss back propagation algorithm for learning in multilayer neural network	work. (8)
	Or	
(b) Ex	plain the concept of Reinforcement learning.	(16)