Reg. No.:					

Question Paper Code:46201

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Sixth Semester

Computer Science and Engineering

14UCS601-PRINCIPLES OF COMPILER DESIGN

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1.	Compiler can check		
	(a) Logical Error	(b) Syntax Error	
	(c) Both logical and syntax Error	(d) Not logical and syntax Error	
2.	The lexical analyzer takes	_as input and produces a stream of	as output
	(a) Source program, tokens	(b) Token, source program	
	(c) Either A and B	(d) None of the above	
3.	YACC resolves conflicts by of type		
	(a) Shift-Shift	(b) Shift Reduce	
	(c) RMS current decreases	(d) A and B	

4. The process of assigning load addresses to the various parts of the program and the assigned addresses is called					
	(a) Assembly (b) Parsing (c) Relocation (d) Symbol reso	lution			
5.	A grammar that produces more than one parse tree for some sentence is called as				
	(a) Ambiguous (b) Unambiguous (c) Regular (d) All the ab	oove			
6.	Which one of the following statement is false for the SLR (1) and LALR (1) partiables for a context free grammar?	arsing			
	(a) The reduce entries in both the tables may be different(b) The error entries in both the tables may be different(c) The go to part of both tables may be different(d) The shift entries in both the tables may be identical				
7.	In a bottom-up evaluation of a syntax directed definitions, inherited attributes can (a) always be evaluated (b) be evaluated only if the definition (c) be evaluated only if the definition has (d) never be evaluated synthesized				
8.	In a bottom-up evaluation of a syntax directed definitions, inherited attributes can (a) Always be evaluated (b) Be evaluated only if the definition (c) be evaluated only if the definition has synthesized (d) Never be evaluated				
9.	Object code form of code generation is represent by				
	(a) Absolute Code(b) Re locatable machine code(c) Assembler Code(d) All the above				
10.	. What is the minimum number of registers needed in the instruction set architecture processor to compile this code segment without any spill to memory?	of the			
	(a) 3 (b) 4 (c) 5 (d) 6				

PART -	B (5	X	2 =	10	Marks)
--------	------	---	-----	----	--------

- 11. Depict diagrammatically how a language is processed.
- 12. Describe the role of lexical analyzer.
- 13. List the properties of LR parser.
- 14. Mention the two rules for type checking.
- 15. What is the use of Next-use information?

PART - C (5 x
$$16 = 80 \text{ Marks}$$
)

16. (a) Explain in detail the process of compilation. Illustrate the output of each phase of compilation for the input position=initial+rate *10 (16)

Or

- (b) (i) Mention any four compiler construction tools with their benefits and drawbacks. (10)
 - (ii) Describe the need for grouping of phases of compiler (6)
- 17. (a) Obtain the minimized state DFA for the regular expression (a/b)*abb using subset construction method. (16)

Or

- (b) (i) Write in detail about the role of Lexical analyzer with the possible error recovery actions and the tool for generating lexical analyzer (16)
- 18. (a) Find the LALR for the given grammar and parse the sentence (a + b) * c (16)

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) / id$$
.

Or

(b) Construct the SLR parsing table for the following grammar

(16)

$$S \rightarrow CC$$

$$C \rightarrow cC$$

 $C \rightarrow d$

19. (a) Explain the Specification of simple type checker for statements, expressions and functions. (16)

Or

- (b) Briefly explain about the type checking and its properties. (16)
- 20. (a) Draw the DAG for the following three address code.

$$d = b * c$$
 $e = a + b$ $b = b * c$ $a = e - d$. (16)

Or

(b) (i) Explain the various issues in the design of code generation . (16)