С		Reg. No. :]
		Ouestion Paper	Code: 5	52208	3						
	DE / 1	P Tach DECDEE EVA				20	10				
Second Semester											
		Computer science	and Engin	oorina							
	151108208	Computer science	I ES AND	o svsi	LEV	1 DE	SIG	Nī			
	15005200	(Common to Inform	LLS AND	nolog		I DE	.5101	LN			
		(Common to mitoring	2015	noiog	y)						
Dui	ration [.] Three hours	(Regulation)II 201 <i>3</i>)		N	Maxi	imur	n· 1(00 N	/ark	S
Dui		Answer ALL	Questions	5	1	(IUII	1111041		0010	1411	.0
		PART A - (5 x	1 = 5 Mar	ks)							
1.	. Find the hexadecimal equivalent of the decimal number 100									CC)1- R
	(a) 46	46 (b)64 (c) E2					(d) None of these				
2.	Advantage of Excess 3 Code									CC)2- R
	(a) Min distance	(b) Self complement	(c) Ham	c) Hamming code ((d) None of these			
3.	Number of selection lines required for 32 x 1 Multiplexer is CO3-)3- R	
	(a) 3	(b) 4	(c) 5			(d) None of these					
4.	No of Flip-flops required to design MOD 50 counter									CC)4- R
	(a) 4	(b) 5	(c) 6			((d) N	lone	of th	nese	
5.	Two types of Hazards	are				CO5- R					
	(a) Static & dynamic	(b) Active & Passive	(c) St	atic 1	& S1	tatic	0	(d) 1	None	e of t	hese
		PART – B (5 x	3= 15 Mar	·ks)							
6.	Why NAND and NOR gates are called universal gates?									CC)1- R
7.	State the significant features of Gray code.									CC)2- R
8.	State the difference between PLA and PAL									CC)3- R
9.	List the different types of shift registers.									CC)4- R
10.	Define: Hazard									CC)5- R

$PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Simplify the following Boolean function using QM method and CO1- App (16) implement it by using only NOR gates. $F(A,B,C,D)=\sum m(0,2,3,4,7,8,10,11,14)+\sum d(5,6,15)$

Or

(b) (i)Simplify the following using Karnaugh map method: CO1- App (8) $F(A,B,C,D)=\sum m(0,4,10,11,13,14)+\sum d(2,8,15)$ And implement the circuit using only NAND gates.

(ii) Design a full adder (using Karnaugh map method) and CO1-App (8) implement it using only NAND gates

- 12. (a) Perform the following operations in 2's complement system. Use CO2- App (16) eight bits (including sign bit) for each number. Check your results by converting the binary result back to decimal.
 - (i) Add + 10 to -20
 - (ii) Add -48 to +88
 - (iii) Subtract+ 20 from -15
 - (iv) Subtract -30 from -10

Or

(b) Analyze the combinational circuit given below and obtain the CO2- Ana (16) Boolean expression and Truth table for the same.

13. (a) Design 8 x 1 Multiplexer and realize Full adder sum function CO3- Ana (16) using the same.

Or

- (b) Design BCD to Excess 3 code converter and implement it using CO3- Ana (16) PAL
- 14. (a) Design and construct MOD 8 Up/Down synchronous counter CO4- Ana (16) using JK flip flops.

Or

(b) Analyze the sequential circuit given below and obtain the state CO4- Ana (16) diagram and state table for the same.

15. (a) Design an asynchronous sequential circuit that has two inputs X₁ CO5- Ana (16) and X₂ and one output Z. When X₁=0, the output Z=0. The first change in X₂ that occurs while X₁ is 1 will cause output Z to be 1. The output Z will remain 1 until X₁ returns to 0.

Or

(b) Discuss in detail about Hazards and its countermeasures. CO5- Ana (16)