		_										
A		Reg. No. :										
		Question Paper	r Co	de: 5	4023	5						
	B.E./H	B.Tech. DEGREE EX	AMI	NATIO	DN, A	PRII	201	19				
		Fourth S	Seme	ster								
		Mechanical	Engi	neerin	g							
	15UMA4	23 - STATISTICS A	ND N	IUME	RICA	L M	ЕТН	ODS	5			
		(Regulat) (Statistical tables)	tion 2 may	015) be peri	mitted	.)						
Dur	ation: Three hours						Ν	laxir	num	: 100) Ma	rks
		Answer AL	L Qu	estions	S							
		PART A - (10 :	x 1 =	10 Ma	ırks)							
1.	Sample size for Smal	l sample									CO	1-
	(a) ≤ 30	(b) < 30	(c)) > 30				((d) =	30		
2.	t-test is for testing me	eans in									CO	1-
	(a) Small Sample	(b) Large Sample	(c)) both					(d) N	lone		
3.	Degree of freedom fo	or SSE in RBD is									CO2	2- F
	(a) (c-1)(r-1)	(b) (c-1)	(c)) (r-1)					(d) n	-k		
4.	The conclusion of AN	NOVA based on									CO	2-1
	(a) F-test	(b) t-test	(c)) Chi-S	Square	test			(d) N	lorm	al	
5.	In what form is the co solved by Gauss-Jord	befficient matrix trans an method.	form	ed into	when	I AX	= B	is			CO	3-]
	(a) Upper triangular	(b) Diagonal	(c)) Scala	r				(d) N	lone		
6.	What is the order of c	convergence of Newto	on-Ra	phson	metho	od?					CO	3-
	(a) 1	(b) 2	(c)) 3					(d) 4			
7.	Newton's divided dif	ference formula used	only	for	in	terva	ıls				CO	4-
	(a) Equal	(b) Unequal	(c)) Both					(d) N	lone		
8.	The order of converge	ence of cubic spline is	5								CO	4-
	(a) 4	(b) 6	(c)) 8				((d) 2			

9.	Wha rule	at is the rest ?	riction	on th	e nur	mber	of i	nterv	als for Sin	mpson's 3/8			CO5- R
	(a) (Ddd		(b) Ev	ren			(c)	Multiple c	of 3	(d) N	lone	
10.	Gau	ssian two po	int for	mula is	s exac	et for	poly	nom	ials upto d	egree			CO5- R
	(a) 2	2		(b) 3				(c)	4		(d) 5		
				F	PART	- B	(5 x	2= 1	0 Marks)				
11.	Writ	te 95% confi	dence	limits	for th	e sar	nple	mear	1.			CO1	- R
12.	Writ	te the ANOV	'A tabl	e for c	compl	etely	/ ranc	lomiz	zed design			CO2	- R
13.	For solving linear system, compare Gaussian elimination method and Gauss-Jordan Method.							CO3- R					
14.	Find the divided difference table for the following data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						CO4- App						
15.	Evaluate								CO5- App				
	$\int_{0}^{1} x d.$	x .by using C	Gauss 2	2-point	t form	nula.							
					PAI	RT –	- C (5	x 16	= 80Mark	s)			
16.	(a)	(i) A manuar by him are 36 defective	facture defecti es. Tes	er clair ve. A t the c	ns tha rando laim o	at on om sa of ma	nly 49 ample anufa	% of cof 6	his produ 00 produc er.	cts supplied ts contained	CO1-	- App	(8)
		(ii) A cert resulted in 5, 2, 8, -1, injection wi	tain in n the 3, 0, ill be ir	follo follo 6, -2, n gener	n adr owing 1, 5, ral, ac	minis g in 0, 4 ccom	sterec ncrea 4. Ca npani	to ses n it l ed by	each of of blood be conclud an increa	12 patients 1 pressure: ded that the se in BP?	COl·	- App	(8)
						Or	[
	(b)	(i) Two indepopulation I estimates of level?	epende had the f the po	ent san e follov opulati	nples wing ion va	of siz value arianc	zes 9 es of ces d	and the v	7 from a n ariables. I significant	ormal Do the Ily at 5%	CO1-	- App	(8)
		Sample1 Sample2	18 11 16 19	3 12 9 13	15 1 16 1	12 1 18 1	4 10 3 1:	5 14 5	15				

(ii) The theory predicts that the proportion of beans in the four CO1- App (8) groups A,B,C, and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Do the experimental results support the theory.

17. (a) The following data represent the number of units of production CO2- Ana (16) per day turned out by 5 different workers using 4 different types of machines.

	Machine types					
Workers	Α	В	С	D		
1	44	38	47	36		
2	46	40	52	43		
3	34	36	44	32		
4	43	38	46	33		
5	38	42	49	39		

(a) Test whether mean productivity is the same for the different machine types.

(b) Test whether the 5 men different respect to mean productivity.

Or

(b) The following data resulted from an experiment to compare three CO2- Ana (16) burners B1, B2, and B3. A Latin square design was used as the tests were made on 3 engines and were spread over 3 days.

	Engine-1	Engine-2	Engine-3
Day-1	B1-16	B2-17	B3-20
Day-2	B2-16	B3-21	B1-15
Day-3	B3-15	B1-12	B2-13

18. (a) (i) Find a root of $x \log_{10} x - 1.2 = 0$ by Newton's method correct to CO3- App (8) three decimal places.

(ii) Solve the system of equations by Gauss Jordan Method CO3-App (8) x + y + 5z = 7; 2x + 10 y + z = 13; 10 x + y + z = 12;

Or

(b) (i) Solve by Gauss Seidal Method CO3- App (8) 28x + 4y - z = 32, x + 3y + 10z = 24,2x + 17y + 4z = 35. (ii) Using Gauss-Jordan method, find the inverse of CO3- App

	[1	1	3]
A =		- 3	3 .
	_ 2	- 4	- 4]

19. (a) (i) Find f(8) by Newton's divided difference formula for the data: CO4- Ana (8)

Х	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(ii) Find the polynomial f(x) by using Lagrange's formula and CO4- Ana (8) hence find f(3) for (8)

Х	0	1	2	5
f(x)	2	3	12	147

Or

(b) The population of a town is as follows.

Year	1941	1951	1961	1971	1981	1991
Population in Lakhs	20	24	29	36	46	51

Estimate the population increase during the period 1946 to 1976.

- 20. (a) (i) By dividing range into ten equal parts evaluate CO5- E (8) $\int_{0}^{\pi} \sin x dx$ by trapezoidal rule and Simpson's rule. Verify your answer with actual integration. (ii) Evaluate CO5- E (8) $\int_{0}^{2} \frac{x^{2} + 2x + 1}{1 + (x + 1)^{4}} dx$ by Gaussian three point formula. Or (b) Using Romberg's method evaluate CO5- E (16)
 - (b) Using Romberg's method evaluate $\int_{0}^{1} \frac{dx}{1+x}$ correct to 3 places of decimals.

CO4- Ana

(8)

(16)