Reg. No. :					
------------	--	--	--	--	--

Question Paper Code: 34204

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fourth Semester

Computer Science and Engineering

01UCS404 - DESIGN AND ANALYSIS OF ALGORITHMS

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. What is algorithm design technique?
- 2. List the sequence of steps to perform empirical analysis of algorithm's time efficiency.
- 3. Name four applications of Brute-force approach.
- 4. What is knapsack problem?
- 5. Define dynamic programming.
- 6. State the uses of memory functions to solve knapsack problem.
- 7. What is an objective row?
- 8. What is a decision tree?
- 9. When a node in state-space tree is said to be a non promising node?
- 10. What are NP complete problems? Give an example.

PART - B ($5 \times 16 = 80$ Marks)

- 11. (a) (i) Discuss the various steps involved in algorithmic problem solving. (10)
 - (ii) Mention the different types of problems and give examples to each. (6)

Or

- (b) Solve the following recurrence relations
 - a) x(n)=x(n-1) + 5 for n > 1 x(1)=0b) x(n)=3x(n-1) for n > 1 x(1)=4c) x(n)=x(n-1)+n for n > 0 x(0)=0d) x(n)=x(n/2)+n for n > 1 x(1)=1 (solve for $n=2^k$) e) x(n)=x(n/3)+1 for n > 1 x(1)=1 (solve for $n=3^k$)
- 12. (a) Describe sequential search and Brute force string matching using Brute force method. (16)

Or

- (b) Discriminate the following solutions based on the time complexity with necessary justification
 - (i) Strassen's matrix multiplication (8)
 - (ii) Multiplication of largest integer
- 13. (a) Apply the bottom up dynamic programming algorithm to the following instance of Knapsack Problem

Item	Weight	Value
1	7	\$42
2	3	\$12
3	4	\$40
4	5	\$25

Capacity *W*=10.

Or

(16)

(16)

(8)

(b) Write the Floyd's algorithm for solving all pair shortest path.				
14. (a) Summarize the steps to be performed in a simplex method with an example.	(16)			
Or				
(b) Explain briefly about the maximum-flow problem with an example.	(16)			
15. (a) (i) Compare branch-and-bound and backtracking.	(6)			
(ii) Draw the state space tree for the problem with the numbers 7, 5, 3, 13, 20, 8 and $M = 18$. Apply backtracking to solve the given subset sum problem. (10)				
Or				

(b) Draw the State-space tree of solving the four queens problem by backtracking. (16)