\mathbf{A}	Reg. No. :					
				7		

Question Paper Code: 54022

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fourth Semester

Civil Engineering

15UMA422 - NUMERICAL METHODS

(Common to EEE, EIE and Chemical Engineering)

(Regulation 2015)

Maximum: 100 Marks

Duration: Three hours

is called

(a) Trapezoidal rule

	Answer ALL	Questions	
	PART A - (10 x 1	= 10 Marks)	
1.	The sufficient condition for the convergence of (a) $ f(x)f''(x) > [f'(x)]^2$	of iteration method is (b) $ \emptyset'(x) > 1$	CO1- R
	(c) $ f(x)f''(x) < [f'(x)]^2$	$(d) \emptyset'(x) < 1$	
2.	The condition for convergence of Gauss Jac system of simultaneous algebraic equation is	obi method for solving a	CO1- R
	(a) A = 0	(b) Orthogonal matrix	
	$(c) A \neq 0$	(d) Diagonally dominant system	
3.	Newton's forward interpolation formula is no value of y using a given value of x only when		CO2- R
	(a) At the beginning of the table	(b) At the middle of the table	
	(c) At the end of the table	(d) Far beyond the given upper valu	e of 'x'
4.	If only two pair values (x_0, y_0) and (x_1) Newton's forward formula reduces to	(y_1) are given then the	CO2- R
	(a) Linear interpolation formula	(b) Non-linear interpolation formula	ı
	(c) Parabolic interpolation formula	(d) Exponential polynomial	
5.	The process of numerical integration of a fur	action of a single variable	CO3- R

(b) Simpson's rule

(c) Cubature

(d) Quadrature

6.	The order of error in the Trap	ezoidai rule is			CO3- R	
	(a) O(h ⁴)	(b) O(h ³)	(c) O(h ⁵)	(d) O(h	n ²)	
7.	Runge-Kutta method of first	order is same as			CO4- R	
	(a) Euler's method		(b) Modified Euler'	s method		
	(c) Taylor series method		(d) Milne's method			
8.	The number of prior values remethod is	-			CO4- R	
	(a) 4	(b) 6	(c) 5	(d) 2		
9.	The equation $u_{xx} + u_{yy} = 0$	is of			CO5- R	
	(a) Elliptic type		(b) Parabolic type			
	(c) Hyperbolic type		(d) Non homogeneo	ous type		
10.	The interval in which the important stable solution is	olicit formula (Crank-	Nicholson) provides	;	CO5- R	
	(a) $0 < \lambda \le 1$	(b) $0 < \lambda \le 2$	(c) $1 < \lambda \le 2$	(d) 0 <	$\lambda \leq \frac{1}{2}$	
		$PART - B (5 \times 2 = 10)$	Marks)		Z	
11.	Find the interval for a positive	e root of the polynomic	$ial x^3 - 2x + 5 = 0.$		CO1- App	
12.	Find y (1) using Lagrange's $x : 0 1 3$ y : 5 6 50	interpolation formula	from the given data	:	CO2- App	
13.	,	Gaussian quadrature f	ormula.		CO3- App	
14.	Find $y(1.1)$ if $y' = x + y$, order.	y(1) = 0 using Taylo	or's series method of	second	CO4- App	
15.	State Crank – Nicholson diffe	erence scheme to solv	e a parabolic equatio	n.	CO5- R	
		$PART - C (5 \times 16 = 1)$	80Marks)			
16.	(a) (i) Solve the following s method, $2x + 3y - z = 5$ 2x - 3y + 2z = 2	• •	Gauss elimination	CO1- Ap	pp (8)	
	(ii) Solve the system of $28x+4y-z=32$, $x-3=3$	+3y+10z = 24, $2x+17$ d.	7y + 4z = 35 by	CO1- Ap	pp (8)	
		Or				

- (b) (i) Find the positive root of $f(x) = 2x^3-3x-6 = 0$, by N-R method. CO1- App (8)
 - (ii) Determine the largest eigen value and the corresponding CO1- App (8) eigen vector of

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ -10 & -1 & 2 \end{bmatrix}$$
 by power method.

17. (a) (i) Find y at x = 43, by using Newton's forward interpolation CO2-App formula from the following data, (8)

X	40	50	60	70	80	90
у	184	204	226	250	276	304

(ii) The population of a town in the census is as given in the data. CO2- App Estimate the population in the year 1996 using Newton's backward interpolation.

Year (x)	1961	1971	1981	1991	2001
Population	46	66	81	93	101
(in 000's)					

Or

(b) (i) Using Newton's divided difference formula, find values of CO2- App (8) f (2) from the following data.

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(ii) Find f (27) by using Lagrange's formula for the data given CO2-App (8) below.

X	14	17	31	35
f(x)	68.7	64.0	44.0	39.1

18. (a) (i) Find y' and y'' at x = 1.5 from the following table,

X	1.5	2.0	2.5	3.0	3.5	4.0
У	3.375	7.0	13.625	24.0	38.875	59

CO3- Ana

(8)

(ii) Find $\int_{1.6}^{2.8} f(x) dx$ by Simpsons $(1/3)^{rd}$ rule from the CO3-Ana (8) following table.

X	1.6	1.8	2.0	2.2	2.4	2.6	2.8
f(x)	4.95	6.05	7.39	9.02	11.02	13.46	16.44

Or

 $\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy$ using the Trapezoidal and Simpson's rules with h = k = 0.5

 $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ given y(0) = 1 at x = 0.2 and x = 0.3 using Runge – Kutta method of 4th order.

Or

(b) (i) Find y(0.2) correct to 3 decimals given CO4- App (8)
$$\frac{dy}{dx} = 1 - 2xy, y(0) = 0 \text{ by using Taylor Series Method.}$$

(ii) Using Milne's method find y(2) given
$$y' = \frac{1}{2}(x + y)$$
 given CO4- App (8) $y(0) = 2$, $y(0.5) = 2.636$, $y(1) = 3.595$ and $y(1.5) = 4.968$.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, subject to

(i)
$$u(0,y) = 0$$
, $0 \le y \le 4$

(ii)
$$u(4,y) = 12 + y$$
, $0 \le y \le 4$

(iii)
$$u(x,0) = 3x, 0 \le x \le 4$$

(iv) $u(x,4) = x^2$, $0 \le x \le 4$ by dividing the square into 16 square meshes of side 1.

Or

(b) Using Explicit scheme solve the wave equation CO5- App (16)
$$u_{x} = u_{xx}$$
, $0 < x < 1$, $t > 0$, given $u(x, 0) = u_{t}(x, 0) = u(0, t) = 0$ and $u(1,t) = 100 \sin(\pi t)$. Compute u for 4 times steps with $h = 0.25$.