	_	
4	r	7
ч	L	

Reg. No.:					

Question Paper Code: 55804

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019

Fifth Semester

Computer Science and Engineering

15UCS504- THEORY OF COMPUTATION

		(Regul	ation 2015)			
Dur	ation: Three hours		Ma	ximum:	100 Marks	
		Answer A	ALL Questions			
		PART A - ($5 \times 1 = 5 \text{ Marks})$			
1.	Epsilon transition is p	resent is	.•			CO1- R
	(a) DFA	(b) NFA	(c) Both	(d) No	one	
2.	Which of the followin	g is NOT the set of re	egular expression			CO2- U
	R = (ab + abb)* bbab)					
	(a) ababbbbab	(b) abbbab	(c) ababb	abbbab	(d) abababab	
3.	How many types of pa	arse tree available?				CO3-U
	(a) 2	(b) 3	(c) 4		(d) 1	
4.	Which of the followin	g pairs have DIFFER	ENT expressive po	wer?		CO4- R
	(a) Deterministic finite	e automata(DFA) and	l Non-deterministic	finite au	tomata(NFA)	
	(b) Deterministic push (NPDA)	n down automata (DP	DA) and Non-deter	rministic	push down auto	mata
	(c) Deterministic sing machine	le-tape Turing machin	ne and Non-determi	inistic sin	gle-tape Turing	
	(d) Single-tape Turing	machine and multi-t	ape Turing machine	e		
5	How many tuples are	present in Turing mad	chine			CO5- R
	(a) 4	(b) 5	(c) 6	(d) 7		
		PART - B ($(5 \times 3 = 15 \text{Marks})$			
6.	Define NFA with epsilon transition and give example CO1-1					
7.	Compare the differences between DFA and NFA					CO2- U

8. What is (a) Derivation (b) Derivation/parse tree (c) Subtree

CO3- U

9. List the languages accepted by PDA and define them

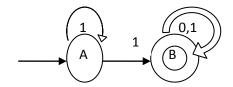
CO₄- R

10. Define Recursive and recursive enumerable language.

CO5-R

11. (a) If L is accepted by an NFA with ε-transition then show that L is accepted by an NFA without ε-transition.

CO1-U


(16)

Or

(b) Consider the following ε -NFA. Compute the ε -Closure of each state CO1- App and find it's equivalent DFA

	3	0	1
->p	ı	{p}	{q}
q	{p}	{q}	{r}
*r	{q}	{r}	-

12. (a) Solve the regular expression for the following DFA, by finding $R_{ij}^{(k)}$ CO2- App (16)

Or

- (b) Construct min-state DFA for the regular expression (a/b)*abb.
- CO2- App

CO₃-U

(16)

(16)

13. (a) Consider the following productions:

$$S \rightarrow aB \mid bA$$

$$A->aS \mid bAA \mid a$$

For the string aaabbabba & baaabbabba, find a leftmost derivation, a rightmost derivation and draw the derivation tree.

Or

(b) Convert the following Context Free Grammar to Chomsky Normal CO3-App (16) Form?

$$S \rightarrow ASB$$

$$A \rightarrow aAS|a|\epsilon$$

$$B \rightarrow SbS|A|bb$$

- 14. (a) Construct PDA for $L = a^n b^m c^m d^n \mid m,n >= 1$ by empty stack. CO4-App (16)
 - (b) Show the equivalence of PDA by empty stack and PDA by final state. CO4-U (16)
- 15. (a) Construct the TMM to implement the function multiplication using CO5-App (16) subroutine copy

Or

- (b) Find the languages obtained from the following operations and prove CO5-App the theorem (16)
 - 1.Union of two recursive languages is -----
 - 2. Union of two recursive enumerable languages is -----
 - 3.L if L and complement of L are recursive enumerable then L is ----

4. Complement of recursive language is -----