Question Paper Code: 45204

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fifth Semester

Computer Science and Engineering

14UCS504 - THEORY OF COMPUTATION

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1. A language L is accepted by the Finite Automata if and only if it is

(a) Context-free (b) context-sensitive (c) recursive (d) right-linear

2. What is the minimum number of states in a DFA that recognizes the set of all binary strings which contains four consecutive 1's?

(a) 6 (b) 5 (c) 4 (d) 3

3. The string 1101 does not belong to the set represented by

(a) $110^{*}(0+1)$ (b) $1(0+1)^{*}101$ (c) $(10)^{*}(01)^{*}(00+11)$ (d) $((11)^{*}+01)^{*}$

4. Pumping lemma is generally used for proving

(a) A given grammar is regular

- (b) A given grammar is not regular
- (c) Whether two given regular expressions are equivalent or not
- (d) None of these
- 5. How many tuples are needed to represent an instantaneous description of a PDA?
 - (a) 1 (b) 2 (c) 3 (d) 4

6.	The language $\{a^m b^n c^{m+n} m, n \ge 1\}$ is							
	(a) regular language		(b) context free language					
	(c) contect ser	nsitive but not context free	e	(d) type-0 but no	ot context sensitive			
7.	The class of context free language is not closed under							
	(a) Concatenation(c) Union			(b) intersection(d) Repeated concatenation				
8.	8. A PDM behaves like a TM when the number of auxiliary memory it has, is							
	(a) 0	(b) 1 or more		(c) 2 or more	(d) all the above			
9.	What is the maximum number of codes is generated to encode a turing machine which consists of four transition function?							
	consists of four tra	ansition function?						
	(a) 12	(b) 24	(c) 1	36	(d) 48			
10. The diagonalization language L_d is								
	(a) recursive		(b) not recursively enumerable					
	(c) recursively enumerable			(d) both (a) and (c)				
PART - B (5 x $2 = 10$ Marks)								
11. Distinguish between NFA and DFA.								
10								

- 12. When two states are equivalent and distinguishable.
- 13. Let G = (N,T,P,S), P = { S \rightarrow A1B / a, A \rightarrow 0A / ϵ , B \rightarrow 0B / 1B / ϵ } give rightmost and leftmost derivation for 00101.
- 14. Design a turing machine for computing the function f(x) = x + 1.
- 15. Define the classes P and NP.

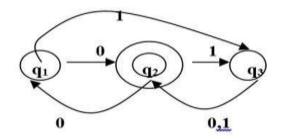
PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) Explain the different forms of proofs with examples. (8)
 - (ii) Design DFA to check whether the given decimal number is divisible by 3. (4)
 - (iii) Design a DFA accepting all strings w over {0, 1} such that the number of 1's in w is 2 mod 4.(4)

45204

(b) (i) Consider the following E-NFA. Compute E-closure of each state and find its equivalent DFA. (10)

δ	3	a	b	c
\rightarrow	ф	{p	{q	{r}
q	{p	{q	{r}	ф
*r	{q	{r}	φ	{p


(ii) Design a DFA which accepts odd number of 1's and any number 0's. (6)

17. (a) (i) Prove that for every regular expression *r* there exist a NFA with ε transition that accepts L(r). (10)

(ii) Show that the language
$$L = \left\{ \frac{o^{i^2}}{i \ge 1} \right\}$$
 is not regular. (6)

Or

(b) Obtain the regular expression that denotes the language accepted by, using the recursive relation. (16)

18. (a) (i) Let $S \rightarrow aB/bA$, $A \rightarrow aS/bAA/a$, $B \rightarrow bS/aBB/b$. Show that $S \Rightarrow aaabbabbba and construct a derivation tree whose yield is in "aaabbabbbaa". (8)$

(ii) Construct a PDA for the language
$$L = \left\{ \frac{a^n \ b^{2n}}{n \ge 1} \right\}.$$
 (8)

Or

- (b) (i) Construct a PDA for set of palindrome over the alphabet $\{a, b\}$. $L(M) = \{WcW^R\}.$ (8)
 - (ii) Show that the following grammars are ambiguous. (8)

19. (a) (i) Design a Turing machine which recognizes palindrome over alphabet $\{0,1\}$.

(8)

(ii) Show that the language
$$L = \{a^i \ b^j c^i \ d^j / i \ge 1 \text{ and } j \ge 1\}$$
 is not CFL. (8)

Or

- (b) (i) Discuss the closure properties of CFL and prove any one of the property. (8)
 (ii) Explain the programming techniques of Turing machine. (8)
- 20. (a) (i) Prove that Lu is RE but not recursive. (8)
 - (ii) Obtain the code for the TM M=($\{q1 \ q2,q3\},\{0,1\} \ \{0,1,B\}, \ \delta,q1,B,\{q2\}$) With the moves $\delta(q1,1)=(q3,0,R), \ \delta(q3,0)=(q1,1,R), \ \delta(q3,1)=(q2,0,R), \ \delta(q3,B)=(q3,1,L).$ (8)

Or

- (b) (i) Define universal language L_u . Prove that L_u is recursively enumerable. (8)
 - (ii) State halting problem. Show that it is undecidable. (8)