c		Reg. No. :										
		Question Pa	per (Code	: 5	59216	5					
	B.E. / B.'.	Tech. DEGREE EX	XAMI	NATI	ON	N, APR	RIL 2	2019				
		Ele	ective									
		Computer Science	e and	Engi	nee	ering						
		15UCS916-CR	YPTC	OGRA	PF	IY						
		(Regula	tion 20)15)								
Dur	ation: Three hours						Μ	aximı	ım: 1	00 N	Iarks	
		Answer AI	LL Qu	estion	S							
		PART A - (5	x 1 =	5 Ma	rks)						
1.	1. A way to improve on the simple mono alphabetic technique is to use different mono alphabetic substitutions as one proceeds through the plaintext message. The general name for this approach isCO1						l -R					
	(a) Poly alphabetic subs	titution cipher	(b)	cryp	tan	alysis						
	(c) Poly analysis cipher		(d)	rail f	enc	ce ciph	er					
2.	. DES has an initial and final permutation block and rounds							CO2	2 -R			
	(a) 14 (b) 15	(c)	16					(d) 1	7		
3.	. In Singular elliptic curve, the equation $x^3+ax+b=0$ does roots. CO					CO.	3 -R					
	(a) does not have three distinct (b) has three distinct											
	(c) has three unique (d) has three distinct unique											
4.	The purpose of Diffie Hellman algorithm is						CO	4- R				
	(a) To exchange the key securely		(b)	(b) To exchange the name of the alg			algo	orithm	1			
	(c) To find GCD			(d) To find the largest prime number								
5.	Key distribution often generated and distribute	involves the use d for temporary us	e of e betw	veen t	wo	wł partie	nich s.	are			CO	5 -R
	(a) session keys		(b)	priva	ite	key ce	rtific	ates				
	(c) public key certificate	2S	(d)	mast	er l	keys						

$PART - B (5 \times 3 = 15 \text{Marks})$

6.	What are the two basic functions used in encryption algorithms?					
7.	Define Diffusion & Confusion.					
8.	Draw the block diagram of one round of DES and write down its strength.					
9.	Differentiate MAC and hash function.					
10.	Explain active and passive attack with example					
PART – C (5 x 16= 80Marks)						
11.	(a) (i) List and explain in detail the different substitution techniques	CO1 -U	(10)			
	with suitable examples.					
	(ii) Write short notes on	CO1 -U	(6)			
	(a) Security Attacks					
	(b)Security Services					

Or

(b) (i) State Chinese Remainder theorem and find X for the given set CO1 -App (12) of

congruent equations using CRT.

X=2(mod 3) X=3(mod 5) X=2(mod 7)

(ii) The enemy must be stopped at all costs. Do whatever CO1-App (4) necessary".

Т	Μ	Р	Q	S
Ζ	V	W	Х	Y
E	0	С	U	R
F	N	А	В	D
L	G	Η	I/J	K

12. (a) Describe DES algorithm with neat diagram and explain the steps. CO2- App (16)

Or

- (b) Explain substitute byte transformation and add round key CO2- Ana (16) transformation of AES cipher. Write down the evaluation criteria for the same.
- 13. (a) Explain in detail, the DiffieHellman key exchange. Users A and B CO3- Ana (16) use the DiffieHellman key exchange technique, a common prime q=71 and a primitive root α=7
 - 1. If user A has private key XA =5, what is A's public key YA?
 - 2. If user B has private key XB =12, what is B's public key YB?
 - 3. What is shared secret key

Or

- (b) Elaborate the different methods of public key distribution systems CO3- Ana (16) with suitable diagrams. Vivid how discrete algorithm in the Diffie Hellman key exchange in exchanging the secret key among users with q=353 and α =3 Secret key of A & B are x_A=97, x_B=233 respectively.
- 14. (a) State the requirements for design of an elliptic Curve Crypto CO4-U (16)
 System. Using that, explain how secret keys are exchanged and messages are encrypted.

Or

(b) Explain the process of deriving eighty 64-bit words from 1024 CO4- Ana (16) bits for processing of a single blocks and also discuss single round function in SHA-512 algorithm.

Show the values of W16, W17, W18 and W19.

15.	(a)	Explain the architecture of IP security in detail.	CO5- U	(16)
		Or		
	(b)	Sketch the SSL Record format and describe about the services	CO5 -U	(16)
		and protocols comprised in SSL Record protocol.		