Reg. No.:											
-----------	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 49217

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019

Elective

Computer Science and Engineering

14UCS917 - MASSIVE DATASET ANALYTICS

(Regulation 2014)

		(Regulatio	11 2014)				
Duration: Three hours			Maximum: 100 Marks				
		PART A - (10 x	1 = 10 Marks)				
		(Answer all (Questions)				
1.	Which of the following is a	characteristics of	Big Data ?	CO1- R			
	(a) Huge volume of data		(b) complexity of data types and structures				
	(c) Speed of data creation ar	nd growth	(d) all of the above				
2.	Near real time processing de	eals with	_ characteristics of data.	CO1- R			
	(a) velocity (b) v	alue	(c) storage	(d) volatility			
3.	The effectiveness of an SVN	M depends upon		CO2- R			
	(a) Selection of Kernel		(b) Kernel Parameters				
	(c) Soft Margin Parameter C		(d) All of the above				
4.	Fuzzy logic is in the form of	of		CO2- R			
	(a) Two-valued Logic		(b) Crispest logic				
	(c) Many – valued Logic		(d) Binary set Logic				
5.	Using of the main memory	as a bit array is ca	alled	CO3- R			
	(a) Bloom filter (b) V	Window filter	(c) Blur filter	(d) Drop filter			
6.	Bloom filter consists of	_ .		CO3- R			
	(a) Array		(b) Vector				

(d) Both A & C

(c) Key values

7.	Mar	ket-basket probl	em was formulated by	·•	C	O4- R
	(a) A	Agrawal et al	(b) Steve et al.	(c) Toda et al	(d) Simon et a	ıl
8.	The	best known fam	ily of clustering algori	thms is	C	O4- R
	(a) A	A-priori	(b) Limited pass	(c) K-means	(d) Multihash	
9.			e first to publicize Meir data processing need	apReduce – a system they ds.	C	O5- R
	(a) \	Yahoo	(b) Google	(c) Microsoft	(d) Linux	
10.			duce framework spaw the InputFormat for th	ns one map task for each e job.	C	O5- R
	(a) (OutputSplit		(b) InputSplit		
	(c) l	InputSplitstream		(d) All of the mentioned		
			PART - B (5	x 2= 10Marks)		
11.	Hov	v will you apply	CO1- R			
12.	List	out the usages of	of Regression Modeling	g	CO	2- R
13.						
						4- R
15.	Wha	at is the use of H	CO5- R			
			PART – C	(5 x 16= 80Marks)		
16.	(a)		.8. What is the samp	population with fraction of ling distribution of Fr, the		(16)
	(b)	Briefly describ	e some important resar	mpling techniques.	CO1- App	(16)
17.	(a)	Explain with a	n example support vec Or	tor and kernel methods.	CO2- U	(16)
	(b)	How do use to neural network	•	nniques needed to illustrate	e CO2- U	(16)
18.	(a)	Also explain	how query answeri	dow using DGIM algorithm ng is done using DGIM 00010101110110010	ſ	(16)

	(b)	Explain in detail about Alon-Matias-Szegedy algorithm for second moments	CO3-U	(16)
19.	(a)	Explain how to run the A-Priori Algorithm using the data mining	CO4-Ana	(16)
		library Patterns.		
		Or		
	(b)	Explain the algorithm for clustering in non-euclidean spaces.	CO4- U	(16)
20.	(a)	Explain in detail the Ecosystem of the Hadoop Framework	CO5- U	(16)
		Or		
	(b)	(i) Describe in detail about Interaction techniques	CO5- U	(8)
		(ii) Briefly explain about Visualization techniques	CO5- U	(8)