A	Reg. No. :						
• 	1108011000		•		•		 ٠

Question Paper Code: 51003

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

First Semester

Civil Engineering

15UPH103- ENGINEERING PHYSICS

(Common to ALL branches)

(Regulation 2015)

Duration: Three hours			Maximum: 100 Marks					
		Answer A	LL Questions					
		PART A - (10	x 1 = 10 Marks					
1.	. In atoms and molecules are arranged in a regular fashion.							
	(a)Amorphous solids	(b) Crystals	(c) Glasses	(d) Plastics				
2.	crystal s	system has maximui	n number of Bravai's la	ttices. CO1- R				
	(a) Cubic	(b) monoclinic	(c) triclinic	(d) Orthorhombic				
3.	3. Intensity of a sound wave is 0.4 W m ⁻² , its sound intensity level is CO2-decibel.							
	(a) 0	(b) 110	(c) 116	(d) 118				
4.	. Choose the appropriate material for magnetostriction oscillator. CO2							
	(a) Iron	(b) Glass	(c) copper	(d) Quartz crystal				
5.	con	firms the transverse	nature of light.	CO3- R				
	(a) Interference	(b) Polarization	(c) Compton effect	(d) Diffraction				
6.	is pur	nping technique use	ed in solid lasers.	CO3- R				
	(a) Electric discharge	(b) Direct conver	rsion (c) Optical pum	ping (d) Heating				
7.	Compton effect can be	e explained by		CO4- R				

(a) Quantum theory (b) Classical theory (c) Classical mechanics

(d) Diffraction

8.	Way	ve length associate		CO4 -R				
	(a) () A°	(b) 10 A°	(c) 100 A°	(d) Infini			
9.				e elastic limit stress is	directly	CO5- R		
	prop	portional to strain"	•					
	(a) I	Elastic law	(b) Hooke's law	(c) Weber-Fechner	r law (d) Ohm	ı's law		
10.		e's disc method material		culate thermal cond	luctivity	CO5 -R		
	(a) I	nsulating	(b) Conducting	(c) Semiconductin	g (d) Nano	O		
			PART – B (5	5 x 2= 10Marks)				
11.	Dist	inguish between c	rystals and amorpho	ous solids.		CO1- R		
12.		nsity of the sound nd intensity level.	waves produced d	uring thunder is 0.1 W	/ m ⁻² . Calculate	CO2- R		
13.	List	any four industria	l applications of las	er.		CO3 -R		
14.	X rays having wavelength 10 A° is scattered by carbon atoms with scattering angle 45°. Calculate the change in wave length of scattered X ray photons.							
15.	Stat	e Hooke's law.				CO5- R		
			PART – C	(5 x 16= 80Marks)				
16.	(a)	-	e packed structure a	e centered cubic structure same.	are and CO1 -Ap	p (16)		
	(b)	Explain the Bridg	Or geman method to gr	ow single crystals.	CO1- U	(16)		
17.	(a)		cillator circuit usin ing frequency more Or	g quartz crystal to g than 20000 Hz.	enerate CO2 -Ap	p (16)		
	(b)	ultrasonic waves		o determine the velo so derive the express l.	•	(16)		
18.	(a)	Discuss the theolight.	ory of plane, circui	lar and elliptically po	olarized CO3 -An	a (16)		

- (b) Discuss the probability of atomic transitions in the following CO3- Ana process. (16)
 - 1. Stimulated absorption (or) Induced absorption.
 - 2. Spontaneous emission.
 - 3. Stimulated emission (or) Induced emission.

Also deduce Einstein's coefficients.

19. (a) Derive Schrödinger's time independent and dependent wave CO4-U (16) equations.

Or

- (b) What is Compton effect? Explain the Compton effect based on CO4-U quantum theory and also derive the expression for Compton effect.
- 20. (a) Derive an expression for depression produced at the loaded end of CO5 -U (16) the cantilever. Based on that how will you determine the Young's modulus of the given brass beam.

Or

(b) Define thermal conductivity. How will you determine the thermal CO5 -U conductivity of a given card board by Lee's disc method.