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Answer ALL Questions 

PART A - (10 x 1 = 10 Marks) 

1. Fourier coefficients for odd function f(x) defined in interval - ≤ x ≤  

and f(x+2)  are  
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2. The root mean square value of f(x) = x in (0, 1) interval CO1- R 

 (a) 2/3 (b)1/(3)
1/2

 (c) 2/(3)
1/2

 (d)4/5 

3. Product of two even or two odd functions is                 CO2- R 

 (a) even (b) odd (c) symmetric (d) antisymmetric 

4. Give a function which is self  reciprocal under sine transform                CO2- R 

 (a) x (b) x
2
 (c) 1/(x) 

(1/2)
 (d) 1/(x) 

(3/2)
 

5. Find  1naZ  CO3- R 
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6. )v (z b)u (z a )v bu a(z nnnn   is CO3- R 

 (a) Dampling rule (b) Recurrence 

property  

(c) Linear property  (d) Shifting property 

7. The p.d.e of z = ax+by is CO4- R 

 (a) x+y (b) qx+py (c) px+qy (d) x-y 

8. r + t = x
2 
+ y is a partial differential equation of order CO4- R 

 (a) 0 (b) 1 (c) 1,2 (d) 2  

9. What is the constant 2a in the wave equation CO5- R 
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10. Let 0 y y x x u  u  is CO5- R 

 (a) wave equation  (b) heat equation (c) Laplace equation  (d) Poisson equation  

PART – B (5 x 2= 10 Marks) 

11. Write the conditions for a function f(x) to satisfy for the existence of a Fourier 

series    

CO1- R 

12. Find the Fourier cosine transform of  0x ,e ax   CO2- R 

13. Define Z transform of the sequence {f(n)} CO3- R 

14. Form the p.d.e by eliminating the arbitrary constant z = ax + by  CO4- R 

15. Classify the pde 02343  xyxyxx uuuu  CO5- R 

 PART – C (5 x 16= 80Marks) 

16. (a) (i) Find the Fourier series expansion of the series 
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  (ii) Obtain the Fourier series expansion of  ),(- in x )x(f  2  with 

period 2. Hence deduce that  
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  Or   

 (b) Determine the first two harmonic of the Fourier series for the 

following values. 

X: 0 
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Y: 1.98 1.30 1.05 1.30 -0.88 -0.25 
 

CO1- App (16) 

 

 

 

 

     

17. (a) Find the Fourier transform of  
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Hence deduce the following: 
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  Or   

 (b) 
Find the Fourier transform of 
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18. (a) Find the Inverse Z-transform of  
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convolution theorem. 

CO3- Ana (16) 

  Or   

 (b) Solve  

y
n+2 

+ 6 y
n+1 

+ 9y
n 
= 2

n 

with y
0 
= y

1 
= 0, using Z – transform. 

 

CO3- Ana (16) 
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19. (a) (i) Solve yxq)xz(p)zy(   CO4-App (8) 

  (ii) Solve   )yx(Sinyx z DDDD 2 267 323   CO4-App (8) 

  Or   

 
(b) Solve 221 qpqypxz   CO4- App (16) 

     

20. (a) A string is stretched and fastened to two points x = 0 and x = l 

apart. Motion is started by displacing the string into the form y =  

x ( l - x) from which it is released at time t = 0. Find the 

displacement of the string at any time ‘t’ 

CO5- U (16) 

  Or   

 (b) A rod of length l has is end A & B kept qt 0
0 

C and 10
0
 C 

respectively until steady state condition prevail. If the temperature 

at B is reduced to 0
0 

C and kept so, while that of A is maintained, 

find the temperature u(x,t)  

CO5- U (16) 

 


