A		Reg. No. :]
	[Question Pape	r C	ode	: 52	002							
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019													
Second Semester													
Civil Engineering													
15UMA202- ENGINEERING MATHEMATICS-II													
(Common to All branches)													
(Regulation 2015)													
Dura	ation: Three hours	Answer AL	L Qı	uestic	ons			М	axim	ium:	100	Mar	·ks
PART A - (10 x 1 = 10 Marks)													
1.	The order of the differential equation										(CO1	- R
	$\frac{d^2 y}{dx^2} + 3\left(\frac{dy}{dx}\right)^4 + 8y = 0$) is											
	(a) 4	(b) 3		(c) 1					(d) 2	2			
2.	The particular integral of $(D^2+2) y = x^2$										(CO1	- R
	(a) $\frac{x^2 + 1}{2}$	(b) $\frac{x^2}{2}$	I	(c) $\frac{x}{-}$	$\frac{2}{2} - 1$				(d) =	<u>x</u> 2			
3.	A vector \vec{F} is called s	solenoidal if									C	202-	R
	(a) $\nabla \times \overrightarrow{F} \neq 0$	(b) $\nabla \cdot \overrightarrow{F} \neq 0$		(c) v	→ .F =	0			(d) v	$\overrightarrow{V} \times \overrightarrow{F}$	= 0		
4.	If \vec{F} represents the force acting on a particle moving along a curve C, then work done is										CO2	- R	
	(a) $\int_{0}^{\infty} \vec{F} \cdot d \vec{r}$	(b) $\int_{C} \vec{F} \cdot d \vec{F}$	I	(c) \int_{c}	$\overrightarrow{F} \cdot d$	→ r		(d) None of these					
5.	The value of m such t	hat $2x - x^2 + my^2$ is have	² is harmonic								(CO3	- R
	(a) m = 0	(b) m = 1		(c) m	n = -1	[(d) r	n = 2	2		

6. The necessary condition for the analyticity of a function is

(a)
$$u_x = v_y \& u_y = -v_x$$

(b) $u_x = v_x \& u_y = -v_y$
(c) $u_x = -v_y \& u_y = v_x$
(d) $u_x = v_y \& u_y = v_x$

- 7. The point z = a is called a removable singularity of f(z) if CO4- R
 - (a) $\lim_{z \to a} f(z)$ exists (b) $\lim_{z \to -a} f(z)$ exists (c) $\lim_{z \to 0} f(z)$ exists (d) None of these
- 8. The poles of tan z are
 - (a) $z = n \frac{\pi}{2}$; n is odd (b) $z = \pm n \frac{\pi}{2}$; n is even (c) $z = \pm n \frac{\pi}{2}$; n is odd (d) $z = n \frac{\pi}{2}$; n is even
- 9. $L[e^{at}] =$

(a)
$$\frac{1}{s+a}$$
 if $s+a > 0$ (b) $\frac{1}{s-a}$ if $s-a > 0$ (c) $\frac{a}{s-a}$ if $s-a > 0$ (d) $\frac{a}{s+a}$ if $s+a > 0$

- 10. The unit impulse function $\delta(t a)$ is
 - (a) $\lim_{h \to 0} \frac{1}{h}$, $a \le t \le a + h$ (b) $\lim_{h \to 0} \frac{1}{h}$, $a \le t < a + h$ (c) $\lim_{h \to 0} \frac{1}{h}$, $a < t \le a + h$ (d) $\lim_{h \to 0} \frac{1}{h}$, a < t < a + h

 $PART - B (5 \times 2 = 10 \text{ Marks})$

11. Transform

 $(3x + 2)^2 \frac{d^2 y}{dx^2} + 3(3x + 2)\frac{dy}{dx} - 36y = 0$ into differential equation with constant coefficient.

- 12. Find the value of λ , if $\vec{F} = (\lambda \text{ xy- } z^3) \vec{i} + (\lambda - 2) x^2 \vec{j} + (1 - \lambda) xz^2 \vec{k}$ is irrotational. CO2- R
- 13. State Cauchy-Riemann equations in Cartesian coordinates.CO3- R
- 14. Evaluate CO4- R

$$\int_{C} \frac{dz}{z+4}$$
 where C is the circle $|z| = 2$.

15. Find $L[\cos at]$. CO5-R

CO3- R

CO5- R

CO5- R

CO1- R

CO4- R

PART - C (5 x 16= 80 Marks)
16. (a) (i) Solve
$$(D^2 - 4D - 5)y = e^{2x} + 3\cos 4x$$
. CO1- App (8)
(ii) Solve $[(1+x)^2D^2 + (1+x)D + 1]y = \cos 2\log(1+x)$. CO1- App (8)

Or

(b) (i) Solve $(D^2 - 4D + 4)y = e^{2x}$ by the method of variation of CO1- App (8) parameters.

(ii) Solve
$$(x^2 D^2 - 7xD + 12)y = x^2$$
. CO1- App (8)

17. (a) Verify Green's theorem for CO2- E (16) $\int_{C} (3x^{2} - 8y^{2}) dx + (4y - 6xy) dy, \text{ where } C \text{ is the region bounded}$ by the lines x = 0, y = 0, x + y = 1.

(b) Verify Gauss divergence theorem for CO2- E (16) $\vec{F} = xz \vec{i} + 4xy \vec{j} - z^2 \vec{k}$ over the cube bounded by x = 0, x = 2, y = 0, y = 2, z = 0 and z = 2.

18. (a) (i) Determine the analytic function CO3- Ana (8) f(z) = u+iv if $v = e^{2x} (y\cos 2y + x\sin 2y).$

(ii) Find the bilinear transformation which maps the points CO3-Ana (8) $z = \infty, i, 0$ into $w = 0, i, \infty$ respectively.

Or

(b) Prove that the function $v = e^{-x}(x \cos y + y \sin y)$ is harmonic and CO3- Ana (16) determine the corresponding analytic function f(z).

19. (a) (i) Using Cauchy's integral formula evaluate CO4- Ana (8)

$$\int_{C} \frac{2}{(z-1)(z+3)} dz \text{ where } C \text{ is the circle } |z-1| = 2.$$

(ii) Expand CO4- Ana (8) $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ as a Laurent series valid in the region (i) |z| < 2 (ii) |z| > 3. (b) Evaluate CO4- E (16) $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} dx , a > 0, b > 0 by using Contour integration.$

Or

- 20. (a) (i) Find the Laplace transform of CO5- App (8) $f(t) =\begin{cases} k, & 0 \le t \le a \\ -k, & a \le t \le 2a \end{cases}; \\ f(t+2a) = f(t) \forall t.$
 - (ii) Find CO5- App (8) $L^{-1}\left[\frac{1}{(s+1)(s+3)}\right]$ using partial fraction method.
 - (b) (i) Find $L\left[\frac{\cos 2t - \cos 3t}{t}\right].$ (8)
 - (ii) Solve by using Laplace transform technique, y'' + 5y' + 6y = 2 given that y(0) = 0 and y'(0) = 0. (8)

4