A		Reg. No:											
Question Paper Code: 51002													
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019													
First Semester													
Civil Engineering													
15UMA102 – ENGINEERING MATHEMATICS-I													
(Common to All Branches)													
(Regulation 2015)													
Duration: Three hours Maximum: 100 Marks							rks						
Answer ALL Questions													
PART A - (10 x 1 = 10 Marks)													
1.	Evaluate $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$							CO	1- R				
	(a) 0	(b) 4		(c)	1				(d)	6			
2.	Suppose $(x) = \begin{cases} \frac{x^2 - x}{2x} & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$. If $f(x)$ is continuous at x=0, then								CO	1- R			
	the value of 'k' is												
	(a) -1	(b)1		(c)	$-\frac{1}{2}$				(d)	$\frac{1}{2}$			
3.	If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, then	by Euler's theorem	the v	alue	of							CO	2- R
	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$ is												
	(a) 2u	(b) u		(c)	3u				(d)	0			
4.	If $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$ then	$\frac{\partial(u,v)}{\partial(x,y)}$ is										CO	2- R
	(a) -3	(b) 3		(c)	0				(d)) 1			
5.	Value of $\Gamma\left(\frac{1}{2}\right)$ is											CO	3- R
	(a) $\frac{\pi}{2}$	(b) $\sqrt{\frac{\pi}{2}}$	(c)	$\sqrt{\pi}$					(d)) π			

6.	Evaluation of $\int x^{-5} dx$ is					
	(a) $\frac{x^4}{4} + C$	$(b) - \frac{1}{4x^4} + C$	(c) $\frac{x}{2} + C$	(d) None of	these	
7.	Value of the double i	ntegral $\int_0^1 \int_0^y dy dx$ is			CO4- R	
	(a) 0	(b) $\frac{1}{2}$	$(c)\frac{3}{2}$	(d) $\frac{3}{4}$		
8.	The value of $\int_0^{\frac{\pi}{2}} \int_0^{\sin\theta}$	<i>rdrdθ</i> is			CO4- R	
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{8}$	(c) <i>π</i>	(d) $\frac{\pi}{3}$		
9.	The eigen values of	$\begin{bmatrix} 5 & 6 & 17 \\ 0 & -9 & 23 \\ 0 & 0 & 37 \end{bmatrix}$ are			CO5 R	
	(a) 5, -9, 23	(b) 6, -9, 37	(c) 17, 6, 5	(d) 5, -9, 37		
10.	Sum of the eigen value	ues of the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\2 \end{pmatrix}$ is		CO5 R	

(a) 3 (b) 5 (c) 6 (d) 0
PART – B (5 x
$$2=10$$
Marks)

11. State Leibnitz's theorem to find nth derivative of product of two functions. CO1- App

12. FIf $x = rcos\theta$, $y = rsin\theta$, then find J(u, v). CO2- App

13. Evaluate
$$\int x^2 \sqrt{x^3 + 1} \, dx$$
. CO3- App

14. Evaluate
$$\int_{0}^{1} \int_{1}^{2} x(x+y) dy dx$$
 CO4- App

15. If the sum of two eigenvalues and trace(=sum of diagonal) of a 3X3 matrix A CO5- App are equal, find the value of |A|.

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) (i) Find CO1 - App (4)
$$\lim_{x \to 0^{+}} \sqrt{5x - 4} - \sqrt{x}$$

$$\lim_{x \to 1} \frac{\sqrt{3x^2 + \sqrt{x}}}{x^{-1}}$$

- (ii) Evaluate $\lim_{n \to \infty} \frac{5^{n+1}+7^{n+1}}{5^{n}-7^n}$ CO1 -App (4)
- (iii) Expand $\tan x$ up to the term containing x^5 , using Maclaurin's CO1 App (8) series.

51002

(b) (i).Find
$$y_n$$
 if $y = x^{n-1} log x$
(ii)If $y = e^{ax} sin(bx)$ then prove that
 $y_2 - 2ay_1 + (a^2 + b^2)y = 0$
CO1 -App (8)
CO1 -App (8)

17. (a) (i) Verify Euler's theorem for the function $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$ CO2 -App (8)

- (ii) Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 , if CO2 -App (8) $y_1 = \frac{x_2 x_3}{x_1}, y_2 = \frac{x_3 x_1}{x_2}$ and $y_3 = \frac{x_1 x_2}{x_3}$.
- (b) (i) Examine $f(x, y) = x^3 + y^3 12x 3y + 20$ for its extreme CO2 App (8) values.
 - (ii) The temperature *T* at any point (x, y, z) in a space is CO2 -App (8) $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere

 $x^2 + y^2 + z^2 = 1.$

18. (a) Prove that
$$\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
 CO3 -Ana (16)

Or

(b) (i) Evaluate $\int \frac{x^2}{(x-1)^3 (x-2)} dx$ CO3 -E (8)

(ii) Evaluate $\iint [xy[1 - x - y]^{\frac{1}{2}} dx dy$, over the lines enclosed by CO3 -E (8) the lines

- x = 0, y = 0 and x + y = 1 in the positive quadrant.
- 19. (a) (i) Change the order of integration and hence evaluate CO4 -E (8) $\int_{0}^{a} \int_{y}^{a} \frac{x}{\sqrt{x^{2}+y^{2}}} \, dx \, dy$ (ii) Evaluate $\iiint_{s} xyz \, dxdydz$, where CO4 -E (8) $S = \{(x, y, z): x^{2} + y^{2} + z^{2} \le 1, x \ge 0, y \ge 0, z \ge 0\}$

3

51002

(b) (i) Find the area of the region outside the inner circle $r = 2 \cos\theta$ CO4 -App (8) and inside the outer circle $r = 4\cos\theta$ by double integration.

(ii) Find the volume of the tetrahedron bounded by the plane CO4 -App (8) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the ordinate axis.

20. (a) (i) Find the eigenvalues and eigenvectors of the matrix CO5 - App (8)

$$A = \begin{pmatrix} 7 & -2 & 0\\ -2 & 6 & -2\\ 0 & -2 & 5 \end{pmatrix}$$

(ii) Using Cayley Hamilton theorem, find the value of the matrix CO5 -App (8) $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 - 8A^2 + 2A - I$,

 $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}.$

Or

(b) Reduce the Quadratic form $x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$ to CO5-Ana (16) the canonical form through an orthogonal transformation and hence show that it is positive semi definite. Give also a non-zero set of values which will make the quadratic form zero.