•
Λ

(c) Flame photometry

Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 51005

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

First Semester

Computer Science and Engineering

15UCY105 - APPLIED CHEMISTRY

	(Com	non to EEE, ECE, EIE ,IT	and Biomedical Engineer	ing)			
		(Regulatio	n 2015)				
Dur	ation: Three hours			Maximum: 100 Marks			
		Answer ALL	Questions				
		PART A - (10 x	1 = 10 Marks)				
1.	The number of types carbide is	m CO1- R					
	(a)Two sigma, two Pi	(b)One sigma, two Pi	(c) One sigma, one Pi	(d) Two sigma, one Pi			
2.	The bond order in oxy	The bond order in oxygen is					
	(a) 1	(b) 2	(c) 3	(d) 4			
3.	Difficult to monitor ar	Difficult to monitor and very dangerous form of corrosion					
	(a) Galvanic	(b) Pitting	(c) Crevice	(d) Stress			
4.	Using the data given b	CO2- R					
	$E^{-}Cr_{2}O_{7}^{2-}/Cr^{3+} = 1.33^{\circ}$ $/Mn^{2+} = 1.51V$.	$V, E^{-}Cr^{3+}/Cr = -0.74V, E^{-}$	$CCl_2/Cl^2 = 1.36V$, E^2MnO_4				
	(a) Cl ⁻	(b) Cr	(c) Cr ³⁺	(d) Mn ²⁺			
5.	Primary batteries are	CO3- R					
	(a) Reversible cells	(b) Fuel cells	(c) Sensors	(d) Irreversible cells			
6.	Which is the best ar ground water?	CO3- R					
	(a) Atomic Absorption	n spectrometry	(b) Spectrophotometer				

(d) Ion-selective electrode

1.	Abs	orption of a molec	rule shifted towards ic	onger wavelength is		CO4- R	
	(a) I	Blue shift	(b) Red shift	(c) Green shift	(d) Yellow si	hift	
8.	Which of the following transitions is the highest energy transition?					CO4- R	
	(a) r	σ to σ	(b) n to π^*	(c) σ to σ^*	(d) π to π^*		
9.	The	graph obtained on	plotting weight and	temperature corresponds to		CO5- R	
	(a) I	OTA	(b) TGA	(c) Flame photometry	(d) DSC		
10.	The	fibre which is mad	de from acrylonitrile	as monomer		CO5- R	
	(a) F	Rayon	(b) Acrylic fibre	(c) Nylon	(d) PVC		
			PART – B	(5 x 2= 10 Marks)			
11.	State	e Pauli Exclusion	principle			CO1- R	
12.	. Identify the types of corrosion in the following and explain the mechanism (i) Iron knife with a wooden handle (ii) Welded stainless steel parts						
13.	. Differentiate primary cells and secondary cells						
14.	. A compound with molecular formula CH_2 = CH - CHO absorbs at 217 nm (\square max =16,000). What is the weight concentration in (g/ml) required to observe an absorbance of 0.8 when the cell length is 1 cm?						
15.	Give	e the synthesis and	d uses of Nylon 66			CO5- R	
			PART –	C (5 x 16= 80 Marks)			
16.	(a)		ecular shape and pred 3) ₂ C=O molecules	lict the bond angles for PF ₃ ,	CO1- App	(8)	
		_	t the intra and inter me properties of liquids Or	nolecular hydrogen bonding and .	CO1- App	(8)	
	(b)	Explain the con molecule using N	•	a Homo and hetero diatomic	CO1- App	(16)	
17.	(a)	(i) Explain the rocorrosion with su		omoter as well as an inhibitor of	CO2- App	(8)	
		(ii) Differentiate nickel with their	mechanisms	ting and electroless plating of	CO2- App	(8)	
	(b)	How are metals	Or protected against co	rrosion by modifying the metal	CO2- Ana	(16)	
	(0)		protected against co. nent? Discuss in detai	, , ,	CO2- Alla	(10)	

18.	(a)	(i) Describe the construction of Ni-Cd battery with relevant reactions occurring during discharge. Mention its applications	CO3- Ana	(8)
		(ii) Elaborate in detail about glucose biosensors Or	CO3- Ana	(8)
	(b)	Construct and explain the working principle of an electrochemical biosensor and glucose biosensor. Give the merits and demerits of both sensors.	CO3- Ana	(16)
19.	(a)	Discuss the importance and principles of Green chemistry Or	CO4- U	(16)
	(b)	(i) Explain with a schematic diagram the working of Differential Scanning Calorimetry (DSC). List the merits of DSC.	CO4- Ana	(8)
		(ii) Discuss with a neat diagram, the principle and construction of Thermogravimetry apparatus.	CO4- Ana	(8)
20.	(a)	(i) Explain about the tacticity of polymers	CO5- U	(8)
		(ii) Explain the various forms of conducting poly aniline with structure and write about their conducting mechanism Or	CO5- U	(8)
	(b)	What are liquid crystals? Discuss the applications of liquid crystals in the field of electronics.	CO5- U	(16)