A		Reg. No.:										
		Question I	Paper	Cod	e: 5	100	4					
	В.	E. / B.Tech. DEGRE	E EXA	MINA	ATIC	N, A	 APRIL	201	19			
		Fi	rst Sen	nester								
		Mecha	nical E	ngine	ering							
		15UCY104 - ENG	GINEE	RING	CHI	EMIS	STRY					
		(Common to	Chemi	cal Eı	ngine	ering	g)					
		(Re	gulatio	n 2015	5)							
Dur	ration: Three hours	3						N	Maxi	imur	n: 10	00 Mar
		Answe	er ALL	Quest	ions							
		PART A -	$(10 \times 1$	= 10	Mar	ks)						
1.	Which of the foll	owing is expected to	have m	axim	um b	ond	streng	th				CO1-
	(a) ClF	(b) Cl ₂		(c) B	aCl_2				((d) E	BaS	
2.	Linear geometry is seen with which of the following							CO1				
	(a) H_2S	(b) H ₂ O		(c) C	H_4				((d) C	C_2H_2	
3.	Corrosion of a screw in the clamp of the door is an example for							CO2-				
	(a) pitting			(b) cı	evic	e						
	(c) wirefence			(d) di	ffere	ential	aerati	ion				
4. Which of the following does not promote the differential aeration corrosion?								CO2-				
	(a) Accumulation of dirt			(b) Partially covering metals								
	(c) Wire fence kind of structures (d) Accumulation of oxygen											
5.	All spontaneous j	process are accompar	nied by		i	in en	tropy.					CO3-
	(a) Decrease	(b) Increase		(c) Sa	ame				(d) I	No c	hang	ge

7. Water gas is

(a) Increase

(a) $CO + H_2O$

The entropy of an isolated system can never ____

(b) Decrease

(b) $CO + H_2$

(c) $CO_2 + N_2$

(c) Be zero

(d) $CO_2 + N_2O$

(d) None of the above

CO3-R

CO4-R

8.		Usage of highly preheated secondary air in pulverized fuel firing helps in							
	(a) Heats fuel at pace (b) Takes less time to finish the process								
	(c) I	Rapid flame prop	agation	(d) Reduce	s the troubles and p	roblems o	caused in the	system	
9.	Brass alloy containing mainly							CO5- R	
	(a) (Cu and Zn	(b) Cu	and Sn	(c) Zn and Pb	(d) Cu	and Fe		
10.	Flue gas is a mixture of								
	(a) (CO,CO ₂ & O ₂	(b) CO	O,CO ₂ & N ₂	(c) $CO_{,}CO_{2}$ & S_{2}	<u>!</u>	(d) CO _, CO ₂	& Ash	
			I	PART – B (5	x 2= 10 Marks)				
11.	wha	at is meant by bo	nd order?					CO1- R	
12.	•	gest the most strosion a) iron re		•	rotecting the follow	ving meta	als from	CO2- R	
13.		what temperature Latent heat of v			the atmospheric pros 545.5 cal/g.	essure is	528 mm	CO3- R	
14.	. What is a flue gas?								
15.	Diff	ferentiate the con	nposition	between Nicl	nrome & Stainless s	teel.		CO5- R	
				PART – C (5 x 16= 80 Marks)				
16.	(a)	(i) Compare the N_2^+	e stability	and bond ord	ler of CO ⁺ , CO, NO	, NO ⁺ ,	CO1- App	(8)	
		(ii) Predict the Be in BeF ₂	hybridiza	tion of S in S	F_6 , Xe in Xe F_4 , N in	n NO ₃ ,	CO1- App	(8)	
				Or					
	(b)				evel diagram to show bond, H ₂ , a single		CO1- App	(8)	
		(ii) Explain Faj	an's rule	in detail.			CO1- App	(8)	
17.	(a)	(i) Derive the N	Vernst equ	uation for elec	trode potential.		CO2- App	(8)	
			-	nderstand by ure of methan	hybridization. Demo	onstrate	CO2- App	(8)	

	(b)	(i) Calculate the EMF of a cell Pt/Br ₂ (g)(0.1 atm)/Br ⁻ (0.5 M)/Br ₂ (g)(1 atm)/Pt at 298 K	CO2- Ana	(8)					
		(ii) Describe the electroplating process of gold.	CO2- Ana	(8)					
18.	(a)	(i) Derive Clausius-Clapeyron equation.	CO3- Ana	(8)					
		(ii) What is meant by eutectic point? Describe the reduced phase rule with one example.	CO3- Ana	(8)					
Or									
	(b)	(i) Derive an expression for the entropy change for an ideal gas.	CO3- Ana	(8)					
		(ii) Gibbs free energy of a reaction at 300 K and 310 K are -29kcal and -29.5 kcal respectively. Determine its ΔH and ΔS at 300 K.	CO3- Ana	(8)					
19.	(a)	(i) Describe the manufacture of metallurgical coke by Otto-Haffman's oven method.	CO4- U	(8)					
		(ii) A Explain the proximate and ultimate analysis of coal.	CO4- U	(8)					
		Or							
	(b)	(i) How can you analyze flue gas by Orsat apparatus?	CO4- U	(8)					
		(ii) Differentiate between NCV and GCV	CO4- U	(8)					
20.	(a)	(i) Discuss the composition, characteristics and uses of non ferrous alloy.	CO5- U	(8)					
		(ii) Write a note on ceramic matrix composites.	CO5- U	(8)					
		Or							
	(b)	(i) State classification of composite and the need for composite.	CO5- U	(8)					
		(ii) Describe in detail about surface treatment methods.	CO5- U	(8)					