Reg. No. :		
------------	--	--

Question Paper Code: 44024

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fourth Semester

Electronics and Communication Engineering

14UMA424 - PROBABILITY AND RANDOM PROCESS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Statistical Tables are permitted)

PART A - (10 x 1 = 10 Marks)

1.	If <i>X</i> is a Random	Variable, where Var(x) =4, then predict the	he Var $(3X+8)$
	(a) 36	(b) 0	(c) 26	(d) 44

2.	In which probability distribution, Variance and Mean are equal?			
	(a) Binomial	(b) Poisson	(c) Geometric	(d) None of these

3.	When will the two Regression Lines be coincide			
	(a) r= 0	(b) r= 1	(c) $r=\pm 1$	(d) r=∞

- 4. The conditional distribution of *X* given *Y* is
 - (a) f(x/y) = f(x, y) / f(x)(b) f(x/y) = f(x, y) / f(y)(c) f(x/y) = f(x, y) f(x)(d) f(x/y) = f(x, y) f(y)
- 5. Every Strongly stationary process of order 2 is a
 - (a) Orthogonal process(b) Stationary Process(c) WSS Process(d) None of these

6. If both *T* and *S* are discrete, then the random process is called

- (a) stationary(b) discrete random sequence(c) random process(d) Poisson process
- 7. $R_{XX}(\tau)$ is an _____ function of τ (a) positive (b) 1 (c) even (d) odd

The power spectral density of X(t) is defined by 8.

(a)
$$y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$$

(b) $X(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$
(c) $s_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{i\omega\tau}d\tau$
(d) $s_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau)e^{-i\omega\tau}d\tau$

9. Which of the following system is Causal?

(a)
$$y(t)=x(t+a)$$

(b) $y(t)=x(t-a)$
(c) $(t)=a x(t+a)$
(d) $y(t)=x(t)-x(t-a)$

- (c) (t) = a x(t+a)
- 10. White noise is also called as
 - (a) system (
 - (c) functional white noise

- PART B (5 x 2 = 10 Marks)
- 11. State Axioms of Probability.
- 12. Define covariance.
- 13. Define random telegraph signal process.
- 14. State Winear–Khinchine theorem.
- 15. If X(t) is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$, then formulate $R_{XY}(\tau) = R_{XY}(\tau) * h(\tau).$

PART - C (5 x
$$16 = 80$$
 Marks)

- 16. (a) (i) In a bolt factory machines A, B, C manufacture respectively 25%, 35% and 40% of the total. Of their total output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C? (8)
 - (ii) A random variable X has the p.d.f given by $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 0 \end{cases}$

Find the MGF and mean.

Or

(8)

(b) A random variable X has the following probability function

Value of x	0	1	2	3	4
P(x)	k	3 <i>k</i>	5k	7 <i>k</i>	9k

Find the value of k, P(x < 3) and distribution function of x. (16)

17. (a) (i) The joint probability density function of a bivariate random variable (X, Y) is
$$f(x, y) = \begin{cases} k(x+y), 0 < x < 2, 0 < y < 2\\ 0 , elsewhere \end{cases}$$
. Find (1) the value of k (2) the marginal

probability density of x and y (3) x and y independent. (8)

- (ii) The two lines of regression are 8x 10y + 66 = 0, 40x 18y 214 = 0. The variance
 - of x is 9. Evaluate the mean values of x and y and the Correlation coefficient between x and y. (8)

Or

- (b) (i) The two lines of regression are 8x 10y + 66 = 0, 40x 18y 214 = 0. The variance of x is 9. Evaluate the mean values of x and y and the Correlation coefficient between x and y.
 - (ii) If X and Y are independent variants uniformly distributed in (0, 1). Identify the distribution of XY.
- 18. (a) (i) Enumerate that the process $X(t)=A\cos\omega t+B\sin\omega t$ is Wide –Sense Stationary ,where A and B are random variables if E(A)=E(B)=0 and $E(A^2)=E(B^2)$ and E(AB)=0 (8) The transition probability matrix of a Markov chain $\{X_n\}$, n = 1,2,3,... having three

states 1, 2 and 3 is $P = \begin{bmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{bmatrix}$ and the initial distribution is $P^{(0)} = (0.7, 0.2, 0.1)$.

Identify i)
$$P[X_2=3]$$
, ii) $P[X_3=2, X_2=3, X_1=3, X_0=2]$ (8)

Or

(b) Generalize the postulates of a Poisson process and derive the probability distribution for the Poisson Process. Also Show that the sum of two independent Poisson process is again a Poisson process.
 (16)

19 (a) If the power spectral density of a WSS process is given by

$$S(\omega) = \begin{cases} \frac{b}{a} (a - |\omega|), & \text{for } |\omega| \le a \\ 0, & \text{for } |\omega| > a \end{cases}$$

Find the autocorrelation function of the process.

Or

- (b) (i) State and Prove Wiener-Khinchine theorem.
 - (ii) Given that the autocorrelation function of a stationary random process is $R_{xx}(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}.$ Predict the mean and variance of the process {X(t)}. (8)

20. (a) If $\{X(t)\}$ is a WSS process and if $y(t) = \int_{-\infty}^{\infty} h(u)X(t-u)du$ then Prove that (i) $R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$ (ii) $R_{YY}(\tau) = R_{XY}(\tau) * h(\tau)$ (iii) $S_{XY}(\omega) = S_{XX}(\omega)H^*(\omega)$ (iv) $S_{YY}(\omega) = S_{XX}(\omega)|H(\omega)|^2$ (16)

Or

- (b) (i) A system has an impulse response $h(t)=e^{-\beta t} U(t)$, predict the power spectral density of the output Y(t) corresponding to the input X(t). (8)
 - (ii) If X(t) is a band limited process such that $S_{xx}(\omega) = 0$, $|\omega| > \sigma$, then formulate $2[R_{xx}(0) - R_{xx}(\tau)] \le \sigma^2 \tau^2 R_{xx}(0).$ (8)

(16)

(8)