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Answer ALL Questions 

PART A - (10 x 1 = 10 Marks) 

1. The Fourier series expansion of an even function contains 

(a) Sine terms only        (b) cosine terms only      

 (c) Both sine and cosine terms   (d) Neither cosine nor sine terms 

2. The complex form of Fourier series of f(x) in  , is given by, f(x) = l
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4. Fourier sine transform of xf(x) is, 

  (a) Fc
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5. 
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  (z-1) F(z) = 

  (a) f(1)    (b) ( )F       (c) ( )f      (d) f(0) 

 

6.          is ________ 
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    (c) 
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7.  When the ends of a rod is non zero for one dimensional heat flow equation, the temperature 

 function u(x,t) is modified as the sum of steady state and transient state temperatures. The 

 transient part of the solution which,  

  (a) increases with increase of time    (b) decreases with increase of time 

  (c) increases with decrease of  time    (d) increases with decrease of time 

8. The two dimensional heat flow equation in steady state is, 
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9. In solving equation 
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  (a) ½     (b) 2     (c) 1    (d) 0 

10. The standard five point formula in solving Laplace equation over a region is, 
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PART - B (5 x 2 = 10 Marks) 

11. If f(x) = x
, 
expanded as a Fourier series in   , , find a0. 

12. If F(f(x)) = F(s) , then prove that   )(
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13. State initial and final value theorems of  transforms. 
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14. Evaluate the steady state temperature of a rod of length   whose ends are kept at 30
o
 and 

40
o
 c. 

15. Derive the explicit difference equation corresponding to the partial differential equation 
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PART - C (5 x 16 = 80 Marks) 

16. (a) (i) Obtain the Fourier expansion of  f(x), given that f(x)  = 


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  evaluate .......
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1
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  (ii) Expand f(x) = (x-1)
2
, 0 < x < 1 in a Fourier series of sines only.        (8) 

Or 

 

(b) (i) Find the cosine series for f (x) = x in (0,  ) and  then using Parseval’s theorem,       

   show that 
4

4 4

1 1
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(ii) Find the complex form of Fourier series of  f x if   sinf x ax in x     .    (8)                

17. (a) (i) Evaluate       
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  (ii) Find Fourier cosine transform of 
2 2a xe .                   (8) 

Or 

(b) (i) Show that Fourier Transform of           
  

   is       
  

  .               (8) 

 (ii) Evaluate  
  

                 

 

 
 using Fourier transform method.         (8) 

18. (a) (i) Find  (t
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(b) (i) Solve                    with     and    .                   (8) 

  (ii) Find the inverse   – transform of  
      

      
 by residue method.         (8) 

 

19. (a) A string is stretched between two fixed points at a distance 2   apart and the points of  

  the string are given initial velocities v where, 

  V = 
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, x being the distance from an end point. Find the displacement 

 of the string at any subsequent time.               (16) 

Or 

 (b) A metal bar 20cm  long, with insulated sides, has its ends A and B kept at 30ºC and       

  90ºC respectively until steady state conditions prevail. The temperature at each end  

        is suddenly raised to 0ºC and kept so. Find the subsequent temperature at any time   

        of the bar at any time.                             (16) 

20. (a) Solve             over the square mesh of side 4 units; satisfying the following                

 boundary conditions: 

(i) u(0, y) = 0           for          

(ii) u(4, y) = 12 + y   for          

(iii) u(x, 0) = 3x
 
        for          

(iv) u(x, 4) = x
2
          for                           (16) 

Or 

 (b)  (i) Solve xxu =32 tu  with h=0.25 for t>0; 0<x<1 and u(x,0)=u(0,t)=0; u(1,t)=t .Tabulate 

 u upto t=5 sec using Bender-Schmidt formula.                  (8) 

   (ii) Find the solution to the wave equations ttxx uu  ,0 < x < 1, t  > 0, given that          

  ut(x,0)=0, u(1,t) = u (0,t) = 0 and u (x,0) = 100 sin x.  Compute u for 4 time steps 

  with h=0.25.                        (8) 

 


