Reg. No. :	
------------	--

Question Paper Code: 34023

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fourth Semester

Mechanical Engineering

01UMA423 - STATISTICS AND NUMERICAL METHODS

(Regulation 2013)

(Statistical tables may be permitted)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions.

PART A - (10 x 2 = 20 Marks)

- 1. Define Null hypothesis and Alternative hypothesis.
- 2. Write any two properties of the *F* distribution.
- 3. What is ANOVA?
- 4. What are the basic principles of experimental design?
- 5. What is the order of convergence of Newton-Raphson method and convergence condition for Newton method?
- 6. State the condition for convergence of Gauss Seidal method.
- 7. Find the second degree polynomial through the points (0, 2), (2, 1) and (1, 0) using Lagrange's interpolation formula.
- 8. State the properties of cubic spline.
- 9. State Simpson's 1/3 and 3/8 rule of numerical integration formula.

10. Write the formula to compute $\frac{dy}{dx}$ at $x = x_0 + ph$ for a given data (x_i, y_i) i = 0, 1, 2, ..., n.

PART - B (5 x 16 = 80 Marks)

- 11. (a) (i) In a large city A, 20 percent of a random sample of 900 school boys had a slight physical defect. In another city B, 18.5 percent of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant? (Use a level of significance of 0.05).
 - (ii) Test the significance of the difference between the means of the samples, drawn from two normal populations with the same S.D. from the following data: (Use a level of significance of 0.05.)

	Size	Mean	S.D
Sample I	100	61	4
Sample II	200	63	6

Or

(b) Two random samples gave the following results.

Sample	Size	Sample mean	Sum of squares of deviation from mean
Ι	10	15	90
II	12	14	108

Test whether the samples could have come from the same normal population. (16)

12. (a) The table below shows the yields per hectare of a certain variety of paddy in a particular type of soil treated with manures A, B and C. Analyze the results for manure effects.

A	49	50	48	49
В	48	48	49	47
C	50	50	51	49

Or

(b) A company appoints 4 salesmen *A*, *B*, *C* and *D* and observes their sales in 3 seasons: summer, winter and monsoon. The figures (in lakhs of Rs.) are given in the following table:

Seasons	Salesmen			
	Α	В	С	D
Summer	45	40	38	37
Winter	43	41	45	38
Monsoon	39	39	41	41

- 13. (a) (i) Find the real positive root of $3x \cos x 1 = 0$ by Newton-Raphson method correct to 6 decimal places. (8)
 - (ii) Find the largest Eigen value and the corresponding Eigen vector of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}.$ (8)

Or

(b) (i) Find the largest Eigen values of the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ using power method.

(ii) Find the inverse of the matrix
$$\begin{pmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{pmatrix}$$
 using Gauss-Jordan Method. (8)

14. (a) Using Newton's divided difference formula, find the value of f(8) using the following data;

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(16)

(b) Obtain the cubic spline approximation for the function y = f(x) from the following data, given that $y_0^{''} = y_3^{''} = 0$ (16)

Х	-1	0	1	2
у	-1	1	3	35

15. (a) (i) The table below gives the velocity v of a particle for 20 seconds at an interval of 5 seconds. Find the initial acceleration at time t=0. (8)

t(seconds)	0	5	10	15	20
v(m/s)	0	3	14	69	228

(ii) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ by using Trapezoidal rule taking *t*=0.2. Hence determine the approximate value of π . (8)

Or

(b) (i) Evaluate
$$\int_{0}^{1} \frac{\sin x}{x} dx$$
 by using Gaussian 3-point formula. (8)

(ii) Evaluate
$$\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy$$
 by using Simpson's rule. (8)