	F	Reg. No. :								
	Question	n Paper C	ode: 3	8402	2					
B.E.	. / B.Tech. DE	GREE EXA	MINA	ΓΙΟΝ	I, APF	RIL	2019	Ð		
		Fourth Set	mester							
		Civil Engi	neering							
	01UMA42	22 - NUMER	ICAL	MET	HOD	S				
	(Com	mon to EEE	, EIE a	nd IC	E)					
		(Regulation	n 2013)							

Duration: Three hours

Answer ALL Questions.

Maximum: 100 Marks

PART A - $(10 \times 2 = 20 \text{ Marks})$

- 1. Find an iteration formula to find \sqrt{n} by Newton's method.
- 2. Define truncation error.
- 3. Compare Gauss, Jacobi and Gauss Seidal methods.
- 4. Find the dominant Eigen value of $A = \begin{pmatrix} 1, 2 \\ 3, 4 \end{pmatrix}$ by power method.
- Obtain the Lagrange's interpolating polynomials for the observed data of points (1, 1), (2, 1) and (3, -2).
- 6. State the conditions required for a natural cubic spline.
- 7. Using Newton's backward difference formula, write the formula for the first and second order derivatives at the end values at $x=x_n$.
- 8. Using Trapezoidal rule, evaluate $\int_0^{\pi} \sin x \, dx$ by dividing the range into 6 equal parts.
- 9. Write the normal equations for fitting a straight line by the method of least squares.
- 10. How will you fit a curve of the form $y=ax^b$.

PART - B ($5 \times 16 = 80 \text{ Marks}$)

- 11. (a) (i) Find the positive root of x cosx = 0 by bisection method. (8)
 - (ii) Using Ramanujan's method ,find the root of $x e^x = 1$. (8)

Or

- (b) (i) Using the method find equation secant a real root of the $f(x) = xe^x - 1 = 0.$ (8)
 - (ii) Find the real positive root of 3x cosx 1 = 0 by Newton Raphson method correct to 6 decimal places. (8)
- 12. (a) (i) Solve the system of equations by Gauss Jordan method.

$$\begin{aligned}
 x + 2y + z &= 3 \\
 2x + 3y + 3z &= 10 \\
 3x - y + 2z &= 13
 \end{aligned}$$
(8)

(ii) Find the numerically largest Eigen value of $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ and the (8)

corresponding Eigen Vector.

Or

- (b) (i) Solve the following system of equations by Gauss Seidel iteration method. 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25(8)
 - (ii) Using Jacobi method, find the eigen values and eigen vectors of $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$. (8)
- Find the number of students who obtain marks between 40 and 45 using 13. (a) (i) Newton's formula. (8)

Marks	30-40	40-50	50-60	60-70	70-80
No. of Students	31	42	51	35	31

(ii) Estimate x when y = 20 from the following table using Lagrange's method. (8)

Х	1	2	3	4
У	1	8	27	64
	•	Or		

- (b) (i) Using Newton's divided difference formula, find u(3) given u(1)=-26, u(2)=12, u(4)=256, u(6)=844. (8)
 - (ii) Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the following data and hence find y(5). (8)

Х	4	6	8	10
у	1	3	8	10

14. (a) (i) Find $\frac{dy}{dx}$ at x = 0.5 and x = 0.7 from the following data:

(8)

x	0.4	0.5	0.6	0.7	0.8
у	1.5836	1.7974	2.0442	2.3275	2.6511

(ii) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by dividing into 6 equal parts using Simpson's one-third rule and three eighth rules. (8)

Or

(b) (i) Compute first and second derivative of f(3) for the following data using difference table (8)

X	3.0	3.2	3.4	3.6	3.8	4.0
<i>f</i> (x)	-14	-10.032	-5.296	-0.256	-6.672	14

(ii) Evaluate $\int_{0}^{1} \int_{1}^{2} \frac{2xy}{(1+x^2)(1+y^2)} dxdy \text{ using Trapezoidal rule with } h=k=0.25.$ (8)

15. (a) (i) Find a straight line fit of the form y = a + bx by the method of group averages for the following data. (8)

x :	0	5	10	15	20	25
y :	12	15	17	22	24	30

(ii) Fit a curve of the form $y = ax^b$ to the data.

x :	1	2	3	4	5	6
y :	1200	900	600	200	110	50

Or

(b) (i) Find a straight line fit of the form y = a + bx, by the method of group averages for the following data: (8)

x	0	5	10	15	20	25
у	12	15	17	22	24	30

(ii) By the method of moments, fit a straight line to the data.

 x
 1
 2
 3
 4

 Y
 1.7
 1.8
 2.3
 3.2

(8)

(8)