Question Paper Code: 33021

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL Branches)

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. State the conditions for f(x) to have Fourier series expansion.
- 2. If $f(x) = \sin x$, $in \pi < x < \pi$, find the values of a_0 and a_0 ?
- 3. Define Fourier Integral theorem.
- 4. Find the Fourier sine transform of $\cos x$, 0 < x < a.
- 5. Find the *z* transform of $\{n\}$.
- 6. Write the formula for $Z^{-1}[F(z)]$ using Cauchy's residue theorem.
- 7. State initial and final value theorems on z transform.
- 8. Write the appropriate solution of the one dimensional heat flow equation.
- 9. State the diagonal five point formula to solve the equation $u_{xx} + u_{yy} = 0$.
- 10. Write a difference formula for solving one dimensional wave equation $u_{tt} = a^2 u_{xx}$.

PART - B $(5 \times 16 = 80 \text{ Marks})$

11. (a) Expand $f(x) = x^2$ when $-\pi \le x \le \pi$ in a Fourier series of periodicity 2π . Hence deduce that

(i)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} \dots = \frac{\pi^2}{12}$$

(ii) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$. (16)

Or

- (b) (i) Find the Half range cosine series for y = x in (0, l) and hence show that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots \infty .$ (8)
 - (ii) Compute the first two harmonics of the Fourier series of f(x) given by (8)

Х	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
у	0.8	0.6	0.4	0.7	0.9	1.1	0.8

12. (a) (i) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| : |x| < 1 \\ 0 : otherwise \end{cases}$ and hence find the value of $\int_0^\infty \frac{\sin^4 t}{t^4} dt$ (8)

(ii) Find the Fourier cosine transform of e^{-x^2} and hence find the Fourier sine transform of $x e^{-x^2}$. (8)

Or

(b) (i) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| &: |x| < 1 \\ 0 &: otherwise \end{cases}$ and hence find the value of $\int_0^\infty \frac{\sin^4 t}{t^4} dt$ (8)

(ii) Find the Fourier cosine transform of e^{-x^2} and hence find the Fourier sine transform of $x e^{-x^2}$. (8)

13. (a) (i) Find the Z transform of aⁿ cosnπ and e^t sin2t. (8)
(ii) Solve y_{n+2} + 6y_{n+1} + 9y_n = 2ⁿ given thaty₀ = y₁ = 0, using Z transforms. (8)

33021

- Or
- (b) (i) State and prove initial and final value theorem on Z- transform. (8)

(ii) Find
$$Z^{-1}\left[\frac{z(z^2-z+2)}{(z+1)(z-1)^2}\right]$$
 by using method of Partial fraction. (8)

14. (a) The ends A and B of a rod l cm long have the temperature at $30^{\circ}c$ and $80^{\circ}c$ until steady state prevails. The temperature of the ends is then changed to $40^{\circ}c$ and $60^{\circ}c$ respectively. Find the temperature distribution in the rod at any time. (16)

Or

- (b) A rectangular plate with insulated surface is 10 cm wide and so long compared to its width that it may be considered infinite length. If the temperature at short edge y = 0 is given by $u = \begin{cases} 20 x & : 0 \le x \le 5 \\ 20(10 x) : 5 \le x \le 10 \end{cases}$ and all the other three edges are kept at 0°C. Find the steady state temperature at any point of the plate. (16)
- 15. (a) Solve numerically $4u_{xx} = u_{tt}$ with the boundary conditions u(0,t) = 0, u(4,t) = 0 and the initial conditions $u_t(x,0) = 0$ and u(x,0) = x (4-x) taking h = 1 up to 4 time steps.

(16)

Or

- (b) (i) Solve, by Crank-Nicholson method, the equation $u_{xx} = u_t$ subject to u(x, 0) = 0, u(0, t) = 0 and u(1, t) = t for two time steps by taking h = 0.25. (8)
 - (ii) Evaluate the pivotal values of the following equation taking h = 1 and up to one half of the period of the oscillation $16u_{xx} = u_{tt}$ givenu(0, t) = 0, u(5, t) = 0, $u(x, 0) = x^2(5 - x)$ and $u_t(x, 0) = 0$. (8)

#