C		Reg. No. :											
	ſ	Question Pape	er Co	ode	: 56	103							
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019													
		Sixth	Seme	ster									
		Civil Er	ngine	ering	g								
	150	JCE603- DESIGN C	OF ST	ΈEΙ	L STI	RUC	TUR	RES					
		(Regula	ation	2015	5)								
	Use of IS 800:200	07, IS 875 (Part I, II per	& III mitte	,IV å d	& V)	:198	7 and	d SP	6-1:	1964	are		
Dur	ation: Three hours	Answer Al	LL Q	uest	ions			Ma	ixim	um:	100]	Mark	S
		PART A - (5	x 1 =	= 5 N	Aark	s)							
1.	A piece of round Stee members is known as	el forged in place to c	conne	ct tw	vo or	mor	e Ste	eel				CO	l - R
	(a) Bolt	(b) Revit	(0	c) Sc	rew				((d) S	tud		
2.	Which is tension number											CO2	2- R
	(a) Strut	(b) Boom	(0	c) Ti	e			(d) Rafter				-	
3.	When compression members are overloaded, then their failure takes place because of									CO3	- R		
	(a) Direct compression			(b) Excessive bending									
	(c) Bending combined with twisting				(d) Any of these								
4.	Any major beam in a	structure is known a	S									CO4	- R
	(a) Subsidiary beam	(b) Joist	(0	c) Gi	rder			(d)) Sec	onda	ary b	eams	1
5.	In a plate girder, the clear depth to the thic	vertical stiffners ar kness of web exceed	e pro ls	vide	d wł	nen t	he r	atio	of			COS	5- R
	(a) 50	(b) 65	(0	c) 75					((d) 8	5		

 $PART - B (5 \times 3 = 15 \text{ Marks})$

6.	Define Prying action.	CO1- R
7.	What is mean by tension splice.	CO2- R
8.	Define strut .	CO3- R
9.	Write short note on section classification.	CO4- R
10.	Draw any two profile of trusses.	CO5- R

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) A single bolted double cover butt joint is used to connect two CO1- App (16) plates 6 mm thick. Assuming the bolts of 20 mm diameter at 60 mm pitch. Calculate the efficiency of the joint. Used for 410 Mpa plates and 4.6 grade bolts.

Or

(b) Design a connection to joint two plates of size 250 x 12 mm of CO1- App (16) grade Fe 410, to mobilize full plate tensile strength using shop fillet weld, if

(i) a lap joint is used

(ii) double cover butt joint is used

12. (a) A tie member in a bracing system consists of two angles CO2- App (16) 75 x 75 x 6 mm bolted to a 10 mm gusset, one on each side using a single row of bolts and tack bolted. Designed the tensile capacity of the number of bolts required to develop full capacity of the member. What will be the capacity if the angles are connected on the same side off the gusset plate and tack bolted. What is the effect on tensile strength if the members are not tack bolted?

Or

(b) A single unequal angle 100 x 75 x 6 mm is connected to a 10 mm CO2- App (16) thick gusset plate at the ends with six 16 mm diameter Bolts to transfer tension. Determine the design tensile strength of the angle assuming that the yield and the ultimate stress of Steel used are 250 MPa 410 MPa.

(i) if the gusset is connected to the 100 mm leg.

(ii) if the gusset is connected to the 75 mm leg.

13. (a) Determine the design axial load on the column section ISMB 350, CO3- Ana (16) given that the height of the column is 3 m and that it is pin ended. Also assume the following: Fy=250N/mm²; Fu=410 N/mm²; E=2 X 105 N/mm²

Or

- (b) Design a laced column 10m long to carry a factored axial load of CO3- Ana (16) 1100 KN. The column is restrained in position but not in direction at both ends. Provide single lacing system with bolted connection. Design the column with two channels back to back.
- 14. (a) Design a simply supported beam of 7 m and carrying a reinforced CO4- App (16) concrete floor capable of providing lateral restraint to the top compression flange. The total UDL is made up of 100 kN dead load including self weight plus 150 kN imposed load. In addition, the beam carries a point load at mid span made up of 50 kN dead load and 50 kN imposed load.

Or

- (b) Calculate the moment carrying capacity of a laterally unrestrained CO4- App (16) ISMB 400 member of length 3m.
- 15. (a) Design a Purlin on a sloping roof Truss with the dead load of CO5-U (16) 0.15 kN/m²(cladding and insulation),a live load of 2 kN/m² and wind load of 0.5 kN /m²(suction). The purlins are 2m center to center and of span 4m simply supported on a rafter at a slope of 20degrees. Provide channel section purlin.

Or

(b) Write the step by step design procedure for gantry girder in detail. CO5- U (16)

##