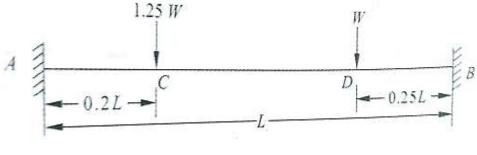
	С	Reg. No. :				
Question Paper Code: 56101						
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019						
Sixth Semester						
Civil Engineering						
	15UCE601- STRUCTURAL ANALYSIS – II					
(Regulation 2015)						
Dur	ation: Three hours	Answer ALL Quest	Maximum: 100 Marks			
Answer ALL Questions						
PART A - $(5 \times 1 = 5 \text{ Marks})$						
1.	Shape factor of square			CO1- R		
	(a) 1.0	(b) 1.5	(c) 2.0	(d) 2.5		
2.	Static interminacy value of a continuous beam ABC, fixed at A and hinged at CO2- R B and C is					
	(a) 1	(b) 2	(c) 3	(d) 4		
3.	Flexibility matrix method is known as			CO3- R		
	(a) Force method		(b) Displacement method			
	(c) Equilibrium method		(d) Graphical me	(d) Graphical method		
4.	A triangular plane stress element hasdegree's		's of freedom.	CO4- R		
	(a) 3	(b) 4	(c) 5	(d) 6		
5.	One practical application of curved beam is CO5- F					
	(a) Circular tanks	(b) Industrial buildings	(c) Bridges	(d) Arches		


PART – B (5 x 3= 15 Marks)

6.	State upper and lower bound theorems.	
7.	Compare static indeterminacy and kinematic indeterminacy.	
8.	A continuous beam ABC is fixed at A and hinged at B and C. No loads are	CO3- R
	acting over the beam. Draw its possible primary structures.	

- 9. Mention applications of finite element analysis in civil engineering. CO4- R
- 10. Draw the profile of a suspension bridge and mark its salient components. CO5- R

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) Determine the collapse load of the beam shown in Figure 1. CO1- App (16)

(b) Collapse loads acting on the frame ABCD is shown in Figure 2. CO1- App (16) Determine the maximum plastic moment capacity of the section.

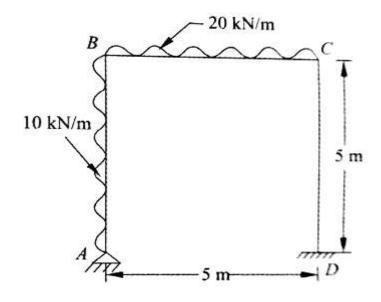
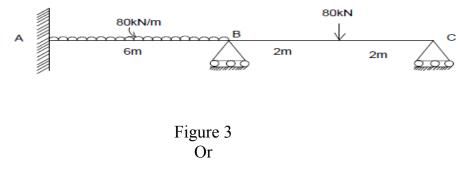
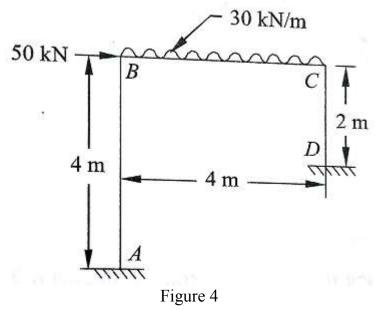




Figure 2

12. (a) Analyse the continuous beam shown in fig 3. By stiffness matrix CO2-Ana (16) method. EI is constant.

(b) Analyse the frame ABCD shown in figure 4 using stiffness matrix CO2- Ana (16) method.

13. (a) Analyze the continuous beam ABC using flexibility matrix method CO3- Ana (16) where support A is fixed and B and C are over rollers. Span AB = 4 m and BC = 3 m. AB is loaded with a UDL of 60 kN/m and BC is loaded with a central point load of 100 kN.

Or

(b) Analyze the portal frame ABCD shown in figure 4 using flexibility CO3- Ana (16) method. Take EI = constant.

14. (a) List out the significance of finite element method with its merits and CO4-U (16) demerits.

Or

- (b) Explain the step by step procedure of analyzing a beam using finite CO4-U (16) element method.
- 15. (a) A suspension cable of span 16 m is supported over columns of equal CO5-U (16) height. Length of the cable is 18 m and it is loaded with a UDL of 1 kN/m. Determine the reactions developed at supports and maximum dip in the cable.

Or

(b) Write the step by step procedure for analysis of space truss using CO5-U (16) tension coefficients method.