Reg. No. :					
Į.					

(b) discontinuous single angle strut

(d) none of these

Question Paper Code: 46101

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Sixth Semester

Civil Engineering

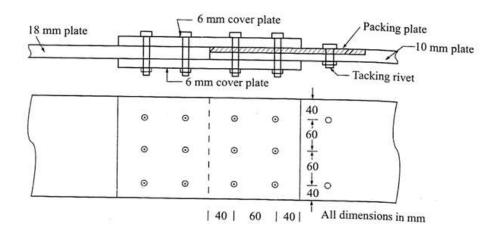
14UCE601 - DESIGN OF STEEL AND TIMBER STRUCTURES

(Regulation 2014)

(Use of IS 800:2007, IS 875 (part I, II & III): 1987, SP 6-1964 and IS 883:1994 are permitted)

Duration: Three hours Maximum: 100 Marks **Answer ALL Questions** PART A - $(10 \times 1 = 10 \text{ Marks})$ 1. If d is the distance between the flange angles, the vertical stiffeners in plate girders are spaced not greater than (b) 1.25 *d* (c) 1.5 d (d) 1.75 d (a) d 2. A fillet weld may be termed as (a) miter weld (b) concave weld (c) convex weld (d) none of these 3. If the unsupported length of a stanchion is 4 meter and least radius of gyration of its cross-section is 5, the slenderness ratio of the stanchion, is (c) 80(a) 60 (b) 70 (d) 90 _____ used to connect long length of members to reduce the effective length of If the unsupported length of a stanchion is 4 meter and least radius of gyration of its crosssection is 5, the slenderness ratio of the stanchion, is (a) 60 (b) 70 (c) 80 (d) 905. A compression member consisting of angle sections may be a

(a) continuous member


(c) discontinuous double angle strut

6.								
	(a) IS: 875	(b) IS: 800	(c) IS: 456	(d) IS: 1893				
7.	The strength of a riveted la	p joint is equal to its						
	(a) shearing strength(c) tearing strength		(b) bearing strength(d) least of (a), (b) and (c)					
8.	The minimum pitch of rive	t holes of diameter d show	ald not be less than	not be less than				
	(a) <i>d</i>	(b) 2.5 <i>d</i>	(c) 1.5 <i>d</i>	(d) 2 <i>d</i>				
9.	The timber to be used in st	ructure must conform to t	he standards specifie	d in				
	(a) BIS 3626-1969 (c) IS 3629-1986		(b) IS 883-1994 (d) BIS 3620-1980					
10.	Group A timber comes und	ler the Modulus of elastic	ity (E) above					
(a) $9.8 \times 10^3 \text{N/mm}^2$ (c) $5.6 \times 10^3 \text{N/mm}^2$			(b) $12.6 \times 10^{3} \text{N/mm}^{2}$ (d) all the above					
		PART - B (5 x $2 = 10 \text{ M}$	arks)					
11.	List any two common failu	re of riveted connection.						
12.	Define net sectional area.							
13.	List out the failures modes	of column sections.						
14.	Write short note on web bu	ickling and web crippling						
15.	List out the types of joints	used in timber members.						
		PART - C (5 x $16 = 80 \text{ N}$	Marks)					
16.	(a) Two cover plates, 10 n	<i>nm</i> and 18 <i>mm</i> thick are c	onnected by a double	cover butt joint				

using 6 mm cover plates as shown in figure. Find the strength of the joint. Given

M20 bolts of grade 4.6 and Fe410 plates are used.

(16)

Or

- (b) Design a lap joint between the two plates each of width 120mm, if the thickness of one plate is 16mm and the other is 12mm. The joint has to transfer a design load of 160kN. The plates are of Fe410 grade. Use bearing type bolts. (16)
- 17. (a) Design a channel section to carry an axial tension of 300kN. Take $f_y = 250 \text{N/mm}^2$.

 Also design the riveted joint at the end. (16)

Or

- (b) A tension member consists of two angle section and carries a load of 200kN. Design the member when both the angles are connected (i) On both sides of Gusset plate (ii) On the same side of Gusset plate. (16)
- 18. (a) A column section ISHB 350@661.2N/m carries an axial load of 1100kN. Design a suitable gusset basing by using riveted connection. (16)

Or

- (b) Design a gusseted base for a column ISHB 350 @ 710 N/m with two plates 450 mm x 20 mm carrying a factored load of 3600 kN. The column is to be supported on concrete pedestal to be built with M20 concrete. (16)
- 19. (a) Design a beam of 5m effective span, carrying a uniform load of 20kN/m if the compression flange is laterally unsupported $f_y = 250N/mm^2$. (16)

Or

(b) Design the maximum section of a plate girder for a bridge live load of 60kN/m, longer than the span and the dead load of 40kN/m. The girder is simply supported over an effective span of 12m. Take impact factor 20/(14+L). (16)

20. (a) Design a timber column for inside location for following data:

Type of wood =Kail, Unsupported length = 3.015*m*, Axial load = 350*kN*. (16)

Or

(b) A compression member is made of 150mm x 60mm deodar wood and it is 2m long. The member is subjected to a compressive load of 16.5kN and a bending moment of 800Nm. Investigate the safety of the design. Safe compressive stress due to axial load: as per code. Safe bearing stress: 10N/mm². (16)