Reg. No. :

Question Paper Code: 57101

B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019

Seventh Semester

Civil Engineering

15UCE701 -DESIGN OF REINFORCED CONCRETE AND BRICK MASONRY STRUCTURES

(Regulation 2015)

(Is 456:2000, Is 1905, Is 3370 : Part-II and SP16 are permitted)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	The factor of safety due to sliding of retaining wall is generally taken as						
	(a) 1	(b) 1.5	(c) 2	(d) 4			
2.	The minimum grac IS 456-2000	le of concrete to be used	in R.C water tank a	s per	CO2- R		
	(a) M20	(b) M25	(c) M30	(d) M35			
3.	The drops are prov	ided in flat slabs to resist	t		CO3- R		
	(a) Torsion	(b) Bending moment	(c) Thrust	(d) Shear			
4.	Which of the following is/are the method of analysis of yield line theory CC						
	(a) Equilibrium method (b) Virtual work method			k method			
	(c) Both	c) Both (d) None of the above					
5.	Usually the thickne	ess of partition wall is			CO5- R		
	(a) 200mm	(b) 300mm	(c) 100mm	(d) 50mr	n		
PART – B (5 x 3= 15 Marks)							
6.	Write the classifications and their suitability of retaining walls.			CO1- R			
7.	Name the different types of joints between water tank wall and floors				CO2- R		
8.	Write the compor	nents of flat slab			CO3 -R		

С

- 9. What is meant by yield lines?
- 10. Compare brick wall with stone wall.

$PART - C (5 \times 16 = 80 Marks)$

- 11. (a) Design a cantilever retaining wall to retain earth embankment CO1- App (16) 4m height above ground level. The density of earth is 18kN/m³ and its angle of repose is 30 degrees. The embankment is horizontal at its top. The safe bearing capacity of the soil may be taken as 200kN/m² and the co efficient of friction between soil and concrete is 0.5. Adopt M20 grade concrete and Fe415 HYSD bars.
 - Or
 - (b) A R.C.C. retaining wall with counter forts is required to CO1-App (16) support earth to a height of 7 m above the ground level. The top surface of the backfill is horizontal. The trial pit taken at the site indicates that soil of bearing capacity 220 kN/m² is available at a depth of 1.25 m below the ground level. The weight of earth is 18 kN/m³ and angle of repose is 30°. The coefficient of friction between concrete and soil is 0.58. Use concrete M 20 and steel grade Fe 415. Design the toe slab and do the usual stability check.
- 12. (a) Design a circular water tank of capacity 400 kilolitres resting CO2- App (16) on the ground and having a fixed base condition due to rigid joint between the wall and the base slab. The materials to be used are M 25 grade concrete and HYSD steel grade Fe 415. Use IS method.
 - Or
 - (b) Design a rectangular RC water tank (resting on the ground) CO2 -App (16) with an open top for a capacity of 80000 litres. The inside dimensions of tank may be taken as 6mx4m. Design the side the side walls of the tank using M20 concrete and Fe250 grade I mild steel. Draw the following views:

(i) Cross-sectional elevation of the tank showing reinforcement details in tank walls.

(ii) Plan of the tank showing reinforcement details

CO4 -R

13.	(a)	Design a interior panel of a flat slab for a ware house of 24 m x 24 m divided into panels of 6 m x 6 m. Loading class is 5 kN/m^2 . Materials used are M15 and Fe250 grade Imild steel. Sketch the reinforcement in an interior panel of the flat slab Or	CO3- App	(16)
	(b)	Explain the step by step procedure of designing a reinforced concrete wall.	CO3-U	(16)
14.	(a)	Design using the yield - line theory a simply supported squarer slab of size 5 m to support a service imposed load of 3 kN/m^2 . Adopt M20 concrete and Fe 415 grade reinforcement.	CO4- App	(16)
	(b)	Or Design a rectangular slab $6m \times 4m$ in size simply supported on all edges to support a service imposed load of $4kN/m^2$. Use M20 and Fe415.	CO4- App	(16)
15.	(a)	Explain the factors to be considered in design of brick masonry	CO5- App	(16)
		Or		
	(b)	Brief the step to step procedure the design of brick wall	CO5- App	(16)