C

Reg. No.:					

Question Paper Code: 54106

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fourth Semester

Civil Engineering

15UCE406- APPLIED HYDRAULIC ENGINEERING

		(Regulation	on 2015)		
Dura	ation: Three hours	Maximum: 100 Marks			
		PART A - (5 x	1 = 5 Marks)		
1.	The minimum specific	tical depth is	CO1- R		
	(a) 3b/2h _c	(b) 3/4h _c	(c) 5/2h _c	(d) $3/2h_c$	
2.	Manning's formula is	used to find out		CO2- R	
	(a) Discharge of flow	in steams	(b) Velocity of flow in steams		
	(c) Area of cross secti	on	(d) None of the above		
3.	The following one is r	not the water profile		CO3- R	
	(a) Mild curve	(b) Smooth curve	(c) Steep curve	(d) Horizontal curve	
4.	Draft tubes are used in	1		CO4- R	
	(a) Pelton turbine	(b) Impulse turbine	(c) Kaplan turbine	(d) None of the above	
5.	Slip is the			CO5-R	
	(a)Theoretical discharge – Actual discharge		(b) Actual discharge - Theoretical discharge		
	(c) No discharge		(d) High discharge		
		PART - B (5 x)	3= 15 Marks)		
6.	Define hydraulic depth of an open channel flow.			CO1- R	
7.	Write Manning's and	CO2- R			
8.	Illustrate back water a	CO3- R			

9.	Giv	e examples for Impulse turbine and reaction turbine.	CO4- R	
10.	Dra	w sketch showing indicator diagram of pump.	CO5- R	
		PART – C (5 x 16= 80 Marks)		
11.	(a)	The discharge of water through a rectangular channel of width 10m, is 22 m³/s when the depth of flow of water is 1.6m, calculate (i) Specific energy	CO1- App	(6)
		(ii) Critical depth and critical velocity	CO1- App	(4)
		(iii) Minimum specific energy.	CO1- App	(6)
		•	сот прр	(0)
	(b)	Or Define specific energy. Draw a neat sketch of specific energy curve and explain the salient points.	CO1- U	(16)
12.	(a)	(i) A trapezoidal canal has side slopes 3H to 4 V and slope of its bed is 1in 2000. Determine the optimum dimensions of the canal, if it has to carry water at $0.5 \text{m}^3/\text{s}$.	CO2- App	(10)
		(ii) Derive the conditions for best rectangular section.	CO2- App	(6)
		Or		
	(b)	Calculate the normal depth of flow for a trapezoidal channel having side slopes 2H to 1V and bottom width 5 meter , discharging 8 m 3 /s. Take N = 0.025 and slope as 1/750.	CO2- App	(16)
13.	(a)	The depth of flow of water at a certain section of a rectangular channel is 2m wide & 0.3m. The discharge through the channel is 1.5 m ³ /s. determine whether the hydraulic jump will occur or not, if so find its height, loss of energy per kg of water and power lost.	CO3- Ana	(16)
		Or		
	(b)	Derive the dynamic equation of Gradually Varied flow.	CO3- Ana	(16)
14.	(a)	A Pelton wheel is to be designed for a head of 60m running at 200 rpm. The Pelton wheel develops 95.64KW power. The velocity of the bucket is 0.45 times the velocity of the jet. Overall efficiency is 0.85 and coefficient of the velocity is $=0.98$.	CO4- App	(16)
		2		

- (b) (i) Write various classifications of turbines. CO4- U (8)
 - (ii) Define draft tube. Explain the various types of draft tubes CO4-U (8) with sketches.
- 15. (a) Single acting reciprocating pump has a diameter of 90mm and CO5-App (16) stroke length 60mm. The length and the diameter of the suction pipe are 5.0m and 50mm respectively. If the suction lift of the pump is 5.2m and separation occurs when pressure in the pump falls below 2.5m of water absolute. Find the maximum speed at which the pump can be run without separation in the pipe.

Or

(b) Draw a neat sketch of centrifugal pump and explain the working CO5- U principle of Centrifugal pump. (16)