С		Reg. No. :										
	Question Paper Code: 54103											
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019												
Fourth Semester												
Civil Engineering												
15UCE403-MECHANICS OF SOLIDS - II												
		(Regulat	ion 2	015)								
Dura	ation: Three hours Maximum: 100 Marks											
		Answer AL	L Qu	estio	ns							
		PART A - (5 x	x 1 =	5 Ma	arks)							
1.	The strain energy stored by the body within at elastic limit when loaded externally is called									C	D1- R	
	(a) Resilience	(b) Pro	of re	silie	nce						
	(c) Modulus of resilience (d) Strain energy											
2.	The product EI is	called									C	02- R
	(a) Flexural rigidi	ty (b	(b) Torsional rigidity									
	(c) Second moment of area (d) I				Ioment of area							
3.	A fixed beam of length 6 m carries a point load 120 kN at its centre. The CO fixed end moment at the ends is									03- R		
	(a) 40 kNm	(b) 90 kNm			(c)	120	kNm	l	(d)	1501	ĸNm	
4.	A cylinder can be assumed as a thin cylinder when the diameter to CO4- I chickness ratio is									04- R		
	(a) <20	(b)>20	(c) 10 (d						(d)]	d) Negligible		
5.	In a channel section	on symmetrical about X	X axi	s, sh	ear c	entre	e lies	at			C	CO5 R
	(a) The centre of the vertical web (b) The centre of the top flange											
	(c) The centroid of the section away (d) None of the above											

$PART - B (5 \times 3 = 15 \text{ Marks})$

6.	Define Strain Energy	CO1- R
7.	What are the methods for finding out the slope and deflection at a section?	CO2- R
8.	What are the advantages of fixed beam over simply supported beam?	CO3- R
9.	Define Equivalent length of the column.	CO4- R
10.	What are the reasons for unsymmetrical bending?	CO5- R

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11. (a) A solid bar is 20 mm dia. And 0.8 m long. It is subjected to CO1- App (16) a torque of 30 Nm. Calculate the maximum shear stress and the strain energy stored. Take G-90GPa.

Or

(b) Determine the strain energy in the cantilever beam shown in CO1- App (16) fig. The flexural stiffness EI is 200kNm2.

12. (a) A steel girder of uniform section 14 m long is simply CO2- App (16) supported at its ends. It carries point loads of 90 kN and 60 kN at two points 3 m and 4.5 m from the two ends respectively. Calculate the deflection of the girder at the points under the two loads. Use Macaulay's method.

Or

(b) A cantilever 150 mm wide and 200 mm deep projects 2 m CO2- App (16) out of a wall, and is carrying a point load of 40 kN at the free end. Determine the slope and deflection of the cantilever at the free end. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$

13. (a) A fixed beam carries point loads as shown in fig. Draw the CO3- Ana (16) S.F and B.M diagrams

(b) Analyze the continuous beam shown in fig. and draw the CO3- Ana (16) B.M diagram.

14. (a) A bar of length 4 m when used as a simply supported beam CO4- Ana (16) and subjected to a u.d.l of 30 kN/m over the entire span, deflect 15 mm at the centre. Determine the crippling loads when it is used as a column with following end conditions
(i) Both ends hinged,
(ii) One end hinged and other end fixed,

(iii) Both ends fixed.

Or

(b) A thin cylinder of internal diameter 1.25 m contains a fluid CO4- Ana (16) at an internal pressure of 2 N/mm². Determine the maximum thickness of the cylinder if
(i) The longitudinal stress is not to exceed 30 N/mm²
(ii) The hoop stress is not to exceed 45 N/mm²

15. (a) Determine principal moment of inertia for the angle section CO5- U (16)
80x80x15 mm. given Ixx=Iyy= 87.36x10-8 m4.

Or

(b) Derive the formula for position of shear centre for channel CO5- U (16) section.