A		Reg. No. :							
Question Paper Code: 56903									
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019									
Sixth Semester									
Chemical Engineering									
15UCH603 - PROCESS INSTRUMENTATION DYNAMICS AND CONTROL									
(Regulation 2015)									
Duration: Three hours Maximum: 100 Marks									
Answer ALL Questions									
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	1. The temperature range in which the industrial mercury – in – glass CO1- R thermometer can be used is								
	(a) 0 to 100 °C	(b) -38 to 960 °F	(c) 150 to 1000	°C (d) 0 to 273 K				
2.	is used for the measurement of moisture in gases. CO1- R								
	(a) Psychrometer (b) pH meter (c) Pirani gauge (d) Sonometer								
3.	The response of a first-order system to a step input reaches of its ultimate CO2-value when the time elapsed is equal to one time constant. R								
	(a) 36.2 %	(b) 23.6%	(c) 63.2%	(d) 5	0%				
4.	If the step response of a second-order system is critically damped, the value $CO2$ -of damping coefficient (ζ) is R								
	(a) < 1	(b) > 1	(c) Infinity	(d) 1				
5.	. The set point is a synonym for the desired value of the variable. CO3- R								
	(a) Controlled	(b) Disturbance	(c) Manipulated	l (d) Perturbation				
6.	The output signal from proportional controller is directly proportional to CO3- R								
	(a) Offset	(b) Rise time	(c) Error	(d) Static	gain				
7.	Frequency response	of a system is with respec	et to forcin	g function.	CO4- R				
	(a) Exponential	(b) Sinusoidal	(c) Step	(d) Ramp				

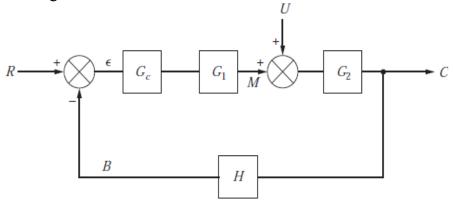
8.	Routh test cannot be used to test the stability of a control system containing							
	(a) [— Fransportation lag	(b) Phase margin	(c) Overshoot	(d) Decay ratio			
9.	control is useful in reducing the effect of a load disturbance that moves through the control system slowly.							
	(a) l	Feed forward	(b) Ratio	(c) Smith predictor	(d) Cascade			
10.	An	An example for mass storage device in computer control system is CO5- R						
	(a) l	Printers	(b) Magnetic tapes	(c) Registers (c	d) Card reader			
PART - B (5 x 2= 10 Marks)								
11.	Define static error of an instrument. CO1- R							
12.	State Laplace transform. Mention its applications in process control study. CO2- U							
13.	Differentiate between servo problem and regulatory problem. CO3- R							
14.	What are Bode diagrams? Give its physical significance. CO4- U							
15.	Write notes about smith predictor control strategy.				CO5- R			
PART – C (5 x 16= 80 Marks)								
16.	(a)	(i) Explain the instrument.	various dynamic charac	eteristics of a measuring	CO1- U (8)			
		(ii) With a circ resistance thermo	•	he working principle of	CO1- U (8)			
			Or					
	(b)		principle of operation s pH measurement.	for Calomel reference	CO1- U (8)			
		(ii) Explain the with a neat sketch		easurement for solutions	CO1- U (8)			
17.	(a)	.,	unsteady-state behavior o	a first-order system by f an ordinary mercury-in-	CO2- Ana (10)			
		(ii) What is linea control system.	rization? Explain the proc	cedure and applications in	CO2- Ana (6)			

Or

(b) (i) Derive the transfer function of a process containing CO2- Ana (8) transportation lag.

(ii) A step change of magnitude 4 is introduced into a system having CO2- Ana (8) the transfer function

$$\frac{Y(s)}{X(s)} = \frac{10}{s^2 + 1.6 \ s + 4}$$


Determine: percent overshoot, rise time, period of oscillation and maximum value of Y(t).

18. (a) Derive the transfer function for proportional – integral – derivative CO3- App (16) (PID) control action and explain the motivation for the addition of integral and derivative control modes in a control system.

Or

(b) (i) What is block diagram? Explain the major components of a CO3- Ana (8) block diagram.

(ii) Consider the block diagram developed for the control of a CO3- App (8) stirred-tank heater where R = set point, B = value produced by the measuring element and U = load variable.

19. (a) Describe the procedure for controller tuning and parameter settings CO4- U (16)
by: Ziegler – Nichols rule and Cohen – Coon (C-C) rule.

Or

(b) (i) Explain the steps of Routh test for checking the stability of a CO4-U (10) control system.

(ii) Describe the control system design procedure using Bode CO4-U (6) stability criterion.

20. (a) Explain the development of closed-loop transfer functions for: CO5- Ana (16) cascade control system and feed forward control system.

Or

(b) Discuss the various control strategies implemented for the control CO5- Ana (16) of distillate and residue composition in a distillation column.