1	A	Reg. No. :											
		Question Pap	er (Cod	e: 5	690	2						
	B.E./I	B.Tech. DEGREE EX	KAM	INA	ΓΙΟΙ	N, Al	PRIL	201	9				
		Sixth	Seme	ster									
		Chemical	Engi	neeri	ing								
	15UCH	1602 – CHEMICAL H	REAC	CTIC	N E	NGI	NEE	RIN	G-I				
		(Regula	tion 2	2015)								
Dur	ation: Three hours	Answer Al	LL Q	uesti	ons	ľ	Maxi	mun	n: 10	0 Ma	arks		
		PART A - (10	x 1 =	= 10	Marl	(s)							
1.	Rate of a chemical reactants for a	reaction is independ reaction	lent	of c	once	ntrat	ion	of t	he			C	01 - R
	(a) Zero order	(b) Third order		(c)	Co	nsec	utive	1		(d) N	lone	of th	ese
2.	Kinetics of a solid cata	lyst reaction can be s	tudie	d in a	a		react	or				CO	01 - U
	(a) Batch	(b) Plug-flow		(c)	Mi	xed				(d) N	lone	of th	ese
3.	In a CSTR	varies with time.										CO	0 2- U
	(a) Reaction rate	(b) Concentration		(c)	Bot	h (a)	& (1))	(d)	Neit	ther ((a) no	or (b)
4.	Backmixing is most pr	edominant in										C	72- R
	(a) A well stirred batcl	h reactor		(h)) A 1	alug-	flow	read	etor			Ċ.	<i>2</i>
	(a) A single CSTD	in reactor		(J)				neat					
5	(c) A single CSTR	h		(d)		IKS	COL	nect	ed m	I Sell	ous	C	72 I I
5.	A multiple reaction ma	ay be classified as a _		read	suon							C	J3- U
	(a) Consecutive or side (b) Parallel or side (c) Mixed								ll (a)),(b)	and	(c)	
6.	The point selectivity $X \xrightarrow{K_2} \to Z$ is equal to	of the product "Y"	in t	he r	eacti	on .	X —	$\xrightarrow{K_1} \rightarrow 1$	Υ,			CO)3- U
	(a) K_1/K_2	(b) K ₂ /K ₁		(c)	K ₁ -1	K_2				(d) K	K ₂ - K ₁	1	

7.	In a/an reactor, there is exchange of heat with the surroundings C with sizeable temperature variation.									
	(a) Adiabatic	(d) None of these								
8.	A batch adiabatic reactor at an initial temperature of 373° K is being used CO4- U for the reaction, $A \rightarrow B$. Assume the heat of reaction is -1kJ/mole at 373°K and heat capacity of both A and B to be constant and equal to 50J/mole.K. The temperature rise after a conversion of 0.5 will be									
	(a) 5°C	(b) 10°C	(c) 20°C	(d) 100°C						
9.	The residence time dist	ribution of an ideal CS	STR is	CO5- R						
	(a) $1/\tau \exp(-t/\tau)$	(b) $\tau \exp(-t/\tau)$	(c) $\exp(-t/\tau)$	(d) $1/\tau$ (-t/ τ)						
10.	The "E" curve for a not age between t and t+dt	on-ideal reactor defines	s the fraction of fluid having	ng CO5- U						
	(a) At the inlet(c) In the reactor	e inlet and outlet								
		PART – B (5 x	x 2= 10 Marks)							
11.	Difference between ele	mentary and non-elem	entary reactions.	CO1- R						
12.	. What situations recycle reactors are used?									
13.	. Define yield and selectivity.									
14.	. What is standard heat of reaction?									
15.	5. On what aspects a non ideal flow will occur in the reactor – Explain?									
		PART – C (S	5 x 16= 80 Marks)							
16	(a) Determine an e	expression for rate	of reaction interms	of CO1- U (16)						

16. (a) Determine an expression for rate of reaction interms of COI- U (16) concentration and conversion for first order reaction using integral method of analysis.

OR

(b) (i) On doubling the concentration of reactant, the rate of reaction CO1- U (4) triples. Estimate the reaction order.

(ii) In studying the kinetics of decomposition reaction, the CO1- Ana (12) concentrations of reactants were determined analytically at different times. The following results were obtained ;

Time, (min)	0	10	20	40	100	125
Conc., mol/lit	0.10	0.0714	0.0556	0.0385	0.02	0.0167

Test the data to find the rate expression of reaction.

17. (a) (i) Derive an expression for the concentration of reactant in the exit CO2-App (12) stream from a series of mixed reactors of different sizes. Assume that the reaction follows first order kinetics and the holding time in the ith reactor is τ_{i} .

(ii) Show that this expression reduces to the appropriate equation CO2-App (4) when all reactors are of the same size.

Or

(b) (i) Derive performance equation for a recycle reactor. CO2-App (6) (ii) At present conversion is 2/3 for our elementary second-order CO2-App (10) liquid reaction $2A \rightarrow 2R$. When operating in an isothermal plug flow reactor with a recycle ratio of unity. What will be the conversion if

the recycle stream is shut off?

18. (a) Substance A in the liquid phase reacts to produce R and S follows. CO3- Ana (16) $A \rightarrow R, A \rightarrow S$ With $r_R = k_1 C_A^2$ and $r_S = k_2 C_A$. The feed with $C_{A0} = 1.0 \text{mol/l}$, $C_{R0} = 0 \text{mol/l}$ and $C_{S0} = 0.30 \text{mol/l}$ enters two mixed flow reactors in series ($\tau_1 = 2.5 \text{ min}, \tau_2 = 10 \text{ min}$). The composition leaving the first reactor is $C_{A1} = 0.40 \text{mol/l}, C_{R1} = 0.20 \text{mol/l}$ and $C_{S1} = 0.70 \text{mol/l}$. Find the composition leaving the second reactor.

Or

(b) In a reactive environment, reactant A decomposes as follows: CO3-Ana (16) $A \xrightarrow{k_1} R \xrightarrow{k_2} S$

where $k_1 = 0.1$ min-1 and $k_2 = 0.1$ min-1 R is to be produced from 1000 l/h of feed ($C_{A0}=1$ mol/l, $C_{R0}=C_{S0}=0$).

(i) What size of plug flow reactor will maximize the concentration of R?

(ii) What is $C_{R,max}$ in the effluent stream from each of these reactors?

19. (a) Determine the equilibrium conversion for the following CO4- App (16) elementary reaction between 0°C to 100°C A↔ R at 298K, ΔG°= -14130 J/mol, ΔH°_R= -75300J/mol, Cp_A = Cp_R= constant.
(i) Construct a plot of temperature v/s conversion.
(ii) What restrictions should be placed on a reactor operating isothermally if conversion of 75% or higher is desired?

Or

- (b) Discuss in detail about temperature progression for optimum CO4- Ana (16) reactor performance.
- 20. (a) Determine the mean residence time and the variance for a vessel CO5- Ana (16) from the following data :

t,	0	1	2	3	4	5	6	7	8	9	10	12	14
min													
Е,	0	0.02	0.10	0.16	0.20	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
\min_{1}													

These RTD data are obtained from a pulse input.

Or

(b) (i) What is an ideal flow? Discuss the effects of non-ideal flow with CO5-U (6) examples.

(ii) Derive the equation for residence time distribution in mixed flow CO5-U (10) reactor.