Reg. No. :	
------------	--

Question Paper Code: 54904

B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019

Fourth Semester

Chemical Engineering

15UCH404 – PHYSICAL CHEMISTRY (Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

- 1. An increase in the temperature of the reactants causes an increase in the rate of CO1- R reaction. The best explanation for this behavior is that as the temperature increases
 - (a) the concentration of reactants increases
 - (b) the activation energy decreases
 - (c) the collision frequency increases
 - (d) the fraction of collisions with total kinetic energy > Ea increases
- 2. For what order reaction does the half-life get longer as the initial CO1- R concentration increases?
 - (a) Zeroth order (b) First order (c) Second order (d) None of them
- 3. The one which decreases with dilution is CO2- U
 - (a) Conductance(b) Specific conductance(c) Equivalent conductance(d) Molar conductance
- 4. Which of the following reactions in aqueous solution does not result in the CO2- U formation of a precipitate?
 - (a) Reaction of ZnCO₃ with HCl.
 (b) Reaction of BaCl₂ with Na₂SO₄
 (c) Reaction of AgNO₃ with KBr
 (d) Reaction of Pb(NO₃)₂ with NaI

5.	Degrees of freedom at triple point will be						
6.	(a) 0 Ideal solutions obey	(b) 1	(c) 2	(d) 3 CO3- R			
7.	(a) Raoult's law Rate of physical adsor	(b) The distrib ption increase v	oution law (c) Oswald's law with	(d) All of these CO4- R			
	(a) Increase in temper	ature	(b) Decrease in pressure				
8.	(c) Decrease in tempe Which of the followin	rature g is an example	(d) Decrease in surface area e of homogeneous catalysis?	CO4- R			
	(a) Enzyme catalysis (b) Hardening of animal and vegetable oils						
	(c) Haber's process		(d) Cracking of heavy oils for	a synthesis of gasoline			
9.	The of colloids are of maximum importance since the interaction CO5- U of the particles with each other and the principal phase is of primary concern.						
10.	(a) Magnitude Polymer formation fro	(b) Surface	(c) Size tarts by	(d) Shape CO5- R			
	(a) condensation react	tion between mo	onomers				
	(b) coordination reaction between monomers						
	(c) conversion of monomers to monomer ions by protons						
	(d) hydrolysis of monomers						
		PART –	B (5 x 2= 10 Marks)				
11.	What are parallel reac	tions? Give an	example.	CO1- U			
12.	. State Kohlrausch's law of independent mobility of ions. CO			CO2- R			
13.	 Determine the number of degrees of freedom in each of the following CO3 systems. (i) Liquid water and water vapour in equilibrium. (ii) Liquid water and water vapour in equilibrium at a pressure of 1 atm. 						
14.	Compare the catalytic	poisons with ca	atalyst inhibitors.	CO4- Ana			
15.	What are sols and gels	s? Give example	es.	CO5- R			

PART – C (5 x 16= 80 Marks)

16.	(a)	(i) What is meant by order of a reaction? Derive the rate expression for second order reaction when the reactants are different.	CO1- U	(12)				
		(ii) Explain half-life time of a reaction	CO1- U	(4)				
		Or						
	(b)	Elucidate the influence if ionic strength on the rates of ionic reactions.	CO1- U	(16)				
17.	(a)	(i) State and explain Kohlrausch's law.Discuss any of its two applications.	CO2- U	(8)				
		(ii) What is pH? How is pH of an electolyte determined with hydrogen electrode .	CO2- U	(8)				
		Or						
	(b)	(i) Derive Oswald's dilution law for weak electrolytes	CO2- U	(8)				
		(ii) Explain any four types of conductometric titrations with suitable diagrams.	CO2- U	(8)				
18.	(a)	(i) Explain how the phase diagrams can be drawn with the help of cooling curves.	CO3- U	(8)				
		(ii) Draw a phase diagram for simple eutectic system and write its application in Pattinson's process.	CO3- U	(8)				
Or								
	(b)	State the distribution law. Under what conditions is the law valid? Discuss the practical applications of the distribution law.	CO3- U	(16)				
19.	(a)	(i) Discuss Langmuir theory of adsorption and derive expression for Langmuir's monolayer adsorption isotherm.	CO4- U	(12)				
		(ii) Write the application of adsorption. Or	CO4- U	(4)				
	(b)	(i) Derive Michaelis –Menten equation and explain the method of determining the constants Km, Vm and write the limitations of Michaelis –Menten kinetics.	CO4- U	(12)				
		(ii) Differentiate between homogeneous and heterogeneous catalysis.	CO4- U	(4)				

20. (a) (i)Write briefly on the preparation, properties and industrial CO5-U (8) applications of emulsions.
(ii) What is the origin of electrical charge on colloidal particles? CO5-U (8) Explain the concept of electrical double layer and zeta potential.

Or

(b) Discuss the method based on measurements of osmotic pressure CO5-U (16) of solution of polymers for the determination of their molar masses.