A		Reg. No. :				
Question Paper Code: 54901						
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019						
Fourth Semester						
Chemical Engineering						
15UCH401- CHEMICAL ENGINEERING THERMODYNAMICS-I						
(Regulation 2015)						
Duration: Three hours Maximum: 100 Marks						
Answer ALL Questions						
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$						
1.	Heat capacity is				CO1- R	
	(a) Derived property	(b) Intensive prope	rty (c) Extensive p	property (d) Nor	ne of these	
2.	The system unaffected	d by the changes in it	s environment is	system.	CO1- R	
	(a) Closed	(b) Open	(c) Isolated	(d) Me	chanical	
3.	Joule Thomson coefficient is for an ideal gas CO2- R					
	(a) Zero	(b) One	(c) Negative	(d) Pos	itive	
4.	All gases at same reduced pressure and temperature have same CO2-R compressibility factor and all deviate from the ideal behavior to the same extent					
	(a) Hess's law		(b) Principle of c	corresponding state	es	
	(c) Heat of formation		(d) None of the a	lbove		
5.	The concept of cycli thermodynamics is	-	y the principles of	second law of	CO3- R	
	(a) Zeorth	(b) First	(c) Second	(d) Thi	rd	
6.	The absolute is zero f of temperatures	or a perfect crystalli	ne substance at abso	lute zero	CO3- R	
	(a) Heat	(b) Mass	(c) Enthalpy	(d) Ent	ropy	

7.	predicts the dependence of equilibrium pressure on CO4- R temperature when two phases of a given substance coexist.					
	(a) Helmholtz (b) Gibbs (c) Clapeyron equation	on (d) None of the above				
8.	8. Un measurable quantities are replaced by measurable quantit	ies by CO4- R				
	(a) Clapeyron equation (b) Maxwel	ll's equation				
	(c) Equation of state (d) Ideal ga	s equation				
9.	9. Porous plug is an example of process.	CO5- R				
	(a) Throttling (b) Threshold (c) Adiabatic	(d) Isothermal				
10.	10. 1 ton of refrigeration is kJ/h	CO5- R				
	(a)12000 (b) 12660 (c) 3516.67	(d) 4184				
PART – B (5 x 2= 10 Marks)						
11.	. Differentiate path & state function. CO1-					
12.	12. Give the physical significance of the virial coefficients.	CO2- R				
13.	What is the change in entropy when 1 kmol of an ideal gas at 335 K and 10 CO3- Ana bar is expanded irreversibly to 300 K and 1 bar? Cp=29.3 kJ/kmol K.					
14.	Provide any two assumptions made in the derivation of Clausius- Clapeyron CO4- R equation from the Clapeyron equation?					
15.	15. What is multi stage compression? What are its advantages?	CO5- R				
PART – C (5 x 16= 80Marks)						
16.	 (a) An elevator with a mass of 3 tons rest at a level of 15m above the CO1- App (16) base of an elevator shaft .It is raised to 125m above the base of the shaft and strikes a spring and comes to rest. Calculate (a) The potential energy of the elevator in its initial and final position. (b) Work required to raise the elevator. (c) The velocity and kinetic energy of the elevator before it strikes the spring. (d) The potential energy of the compressed spring. (e) If the elevator and the spring are considered as a system, calculate the energy of the systems at the different conditions mentioned above. State your assumptions and explain the inference. 					

(b) (i) A cylinder fitted with a piston has a volume 0.1 m^3 and CO1-App (8) contains 0.5 kg of steam at 500 kPa. How much heat is to be supplied to bring the temperature of the steam to 823 K keeping the pressure constant? What is the work done in the process? (ii) Explain the reversible and irreversible process with neat CO1-U (8) sketch. 17. (a) (i) 1 kilo mol CO₂ occupies a volume of 0.381 m³ at 313 K. CO₂- App (10)Compare the pressures given by (a) Ideal gas equation (b) Van der Waals equation Take the Van der Waals constants to be $a=0.365 \text{ Nm}^4/\text{mol}^2$ and $b=4.28 \times 10^{-5} \text{ m}^3/\text{mol}$ (ii) Show that Cp-Cv = R for an ideal gas CO2- App (6)Or (b) Explain the constant pressure, constant volume and constant CO2 Ana (16)temperature processes involving ideal gases (a) Develop the expression for first law of thermodynamics for CO3 U 18. (16)steady state flow process Or (b) Hydrocarbon oil is to be cooled from 425K to 340K at a rate of CO3 Ana (16)5000kg/h in a parallel flow heat exchanger. Cooling water at a rate of 10,000kg/h at 295K is available. The mean specific heats of the oil and water are respectively 2.5kJ/kg K and 4.2kJ/kg K. (a) Determine the total change in entropy. Is the process reversible?

(b) If a reversible Carton engine is to be operated receiving the heat from the oil rejecting the heat to the surroundings at 295kJ/kg K, how much work would be available?

19. (a) Derive the Maxwell's equation from the basic definition of CO4-U (16) internal energy and reference properties.

Or

- (b) Write the importance of Gibb's- Helmholtz equation? How would CO4- U (16) you obtain an equation for the free energy as a function of temperature?
- 20. (a) Compare the thermal efficiency for Diesel cycle and Rankine CO5- Ana (16) cycle used for the analysis of internal combustion engines and steam power plant.

Or

(b) Explain convergent–divergent flow through nozzles and deduce CO5- Ana (16) the equation for the critical pressure ratio.