A		Reg. No. :							
Question Paper Code: 54B04									
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019									
Fourth Semester									
Biomedical Engineering									
15UBM404 - PRINCIPLES OF SIGNALS AND SYSTEMS									
(Regulation 2015)									
Duration: Three hoursMaximum: 100 NAnswer ALL QuestionsMaximum: 100 N									
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	signal's amp independent variable.	litude increased lin	nearly with positive	e value of	CO1- R				
	(a) Impulse	(b) Step	(c) Ramp	(d) Sin	usoidal				
2.	A system whose output called as		the present and pas	t inputs is	CO1- R				
	(a) Causal	(b Stable	(c) Linear	(d) Non-recursive	e				
3.	A complicated waveform analyzed into a number of harmonically CO2- R related sine and cosine functions is								
	(a) Fourier Series	(b) Laplace	(c) Z-Transform	(d) Differential E	Equation				
4.	Laplace transform of u	nit step input is			CO2- R				
	(a) 1	(b) K	(c) S	(d) 1/S					
5.	Two systems with impulse response $h_1(t)$ and $h_2(t)$ are in parallel then CO3- R overall impulse response $h(t)$ is								
	(a) $h_1(t) + h_2(t)$	(b) $h_1(t) - h_2(t)$	(c) $h_1(t) * h_2(t)$	(d) $h_1(t)$	$h) / h_2(t)$				
6.	The commutative prop	erty of convolution	is		CO3- R				
	(a) $x(t)*h1(t)+x(t)*h2(t) = x(t)*[h1(t)+h2(t)]$ (b) $[x(t)*h1(t)]*h2(t) = x(t)*[h1(t)*h2(t)]$								
	(c) $[x(t)+h1(t)]*[x(t)+h2(t)] = x(t)*[h1(t)+h2(t)]$ (d) $x(t)*h(t) = h(t)*x(t)$								

7.	In order to avoid aliasing the sampling frequency (Fs) should be the maximum frequency (Fm) of continuous time signal.									
	(a) Less than or equal to		(b) Greater than or equal to							
	(c) Less than or equal to twice		(d) Greater than or equ	2						
8.	Time interval between any two adjacent samples in sampling technique is				CO4- R					
	(a) Sampling Rate	npling Rate (b) Nyquist Rate (c) Nyquist Interval (d)		(d) Alias	Aliasing					
9.	Z transform of unit impu	lse signal is	·		CO5- R					
	(a) 1	(b) z	(c) Z^{-1}	¹ (d) Infinity						
10.	Z Transform for the difference equation $y(n)=0.5y(n-1) + x(n)$				CO5- R					
	(a) $Y(Z)(1+0.5Z^{-1}) = X(Z^{-1})$	Z)	(b) $Y(Z)(1-0.5Z^{-1}) = X(Z)$							
	(c) $Y(Z)(1+0.5Z) = X(Z)$		(d) $Y(Z)(1-0.5Z) = X(Z)$							
	PART - B (5 x 2= 10 Marks)									
11.	Sketch the signal, $x(n) = \delta(n-1) + \delta(n+1)$									
12.	Write the conditions for existence of Fourier Series.									
13.	The impulse response of the LTI-CT system is given by $h(t) = e^{-t} u(t)$. Determine transfer function and check whether the system is causal and stable.									
14.	Find DTFT of $(1/8)^n u(n)$.									
15.	State the significance of block diagram representation.									

16. (a) (i) Write a brief note classification of CT signals. CO1- App (8) (ii) Check whether the following signals are energy or power CO1- App (8) signals. If so compute their average power or total energy. (1) n^n

a)
$$x(n) = \left(\frac{1}{7}\right)^n u(n)$$

b) $x(t) = \cos^2(\omega_0 t)$

Or

(b) (i) Write a brief note classification of CT and DT systems. CO1- App (8)

(ii) Classify the following systems for Causality, Time CO1- App (8) invariance, Stability and Memory

a)
$$\frac{dy(t)}{dt} + ty(t) = x(t)$$

b) $y(n) = x(n^2)$

17. (a) State and prove the following properties of Fourier Transform. CO2- App (16)

- (i) Time scaling property
- (ii) Time shifting property
- (iii) Time reversal
- (iv) frequency shifting property

Or

(b) (i) Find the laplace transform and ROC for the following CT CO2- App (8) signal.

$$x(t) = e^{-at}u(t) + e^{-bt}u(-t)$$
(ii) Find the inverse laplace transform of $X(S) = \frac{S-2}{S(S+1)^3}$ CO2- App (8)

18. (a) (i) Realize the system described by following differential equation CO3- App (8) in direct form I and direct form II realization

$$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 12y(t) = \frac{d^3x(t)}{dt^3} + 2\frac{d^2x(t)}{dt^2} + 3\frac{dx(t)}{dt} + x(t).$$

(ii) Realize the transfer function

$$H(S) = \frac{S(S+2)}{(S+1)(S+3)(S+4)}$$

in cascaded and parallel form structures.

Or

CO3- App

(8)

(b) Find the inverse Laplace transform of

$$X(S) = \frac{4}{S^2 + 6S + 8}$$
. For following ROC's

(i) -2> Re(S) > -4 (ii) Re(S) < -4 (iii) Re(S) > -2.

- 19. (a) (i) State and prove the following properties of Discrete Time CO4- App (8) Fourier Series.
 - (a) Linearity
 - (b) Time Shifting

CO4- App (8)

CO₃- App

(16)

(ii) Compute the DTFT of following signals.

(a)
$$x(n) = \left(\frac{1}{2}\right)^n u(n)$$

(b) $x(n) = -\left(\frac{1}{4}\right)^n u(-n-1)$
Or

(ii) Compute the Z-transform of following signals. CO4- App (8)

(a)
$$x(n) = \left(\frac{1}{3}\right)^n u(n)$$

(b) $x(n) = -\left(\frac{1}{6}\right)^n u(-n-1)$

20. (a) Find the convolution of following sequences $x_1(n) = (1, 2, 1, -1)$ CO5- App (16) and the input signal $x_2(n) = \{1, 2, 3, 1\}$ using tabular method, matrix method and graphical methods.

Or

(b) Find the impulse response of the discrete time system described CO5- App (16) by the difference equation y(n) - 3y(n-1) - 4y(n-2) = x(n) +2x(n-1) using Z transform.