Reg. No. :

		Question Pape	er Code: 55B04			
	B.E.	/ B.Tech. DEGREE E	XAMINATION, APRIL	. 2019		
		Fifth	Semester			
		Biomedica	ll Engineering			
	15UBM5	04 - PRINCIPLES OF	DIGITAL SIGNAL PRO	DCESSING		
		(Regula	ation 2015)			
Duration: Three hours			М	Maximum: 100 Marks		
		Answer A	LL Questions			
		PART A - (5	$5 \ge 1 = 5 \text{ Marks}$			
1.	Radix – 2 FFT algo	orithm performs the con	mputation of DFT in	CO1- I	2	
	(a) N/2Log2N mul	N additions				
	(b) N/2Log2NmultiplicationsandNLog2Nadditions					
	(c) Log2N multiplications and N/2 Log2N additions					
	(d) N Log2N multiplications and N/2 Log2N additions					
2.	The poles of the Cl	nebyshev filter lie on a		CO2- I	2	
	(a) Circle	(b) Ellipse	(c) Parabola	(d) Hyperbola		
3.	In FIR filter designates separately controlle	n FIR filter design, which among the following parameters is/are Comparately controlled by using Kaiser window?				
	(a) Order of filter (M)		(b) Transition width of main lobe			
	(c) Both a and b		(d) None of the above	/e		
4.	The error in the filter output that results from rounding or truncating calculations within the filter is called				2	
	(a) Coefficient quantization error		(b) Adder overflow	limit cycle		
	(c) Round off noise		(d) Limit cycles			
5.	Decomposing image into band limit components is called			CO5- I	R	
	(a) Low coding	(b) High coding	(c) Intense coding	(d)Sub band coding		

PART - B (5 x 3= 15Marks)

- 6. Compute the DFT of the sequence, $x(n) = \{0, 1, 2, 1\}$. CO1-U
- 7. By impulse invariant method obtain the digital filter transfer function of analog CO2-App filter Take T=1 sec $H(s) = \frac{2}{(S^2 + 3S + 2)}$
- 8. Write the expression for Hanning, Hamming and Kaiser Window. CO3-U
- 9. The filter coefficient H=-0.673 is represented by sign magnitude fixed point CO4-App arithmetic. If the word length is 6 bits, compute the quantization error due to truncation.
- 10. What are the characteristics of wavelet transform. CO5-U

11. (a) Determine the response of the sample data sequenceCO1- App(16) $x(n)=\{1,-1,-1,-1,1,1,1,-1\}$ by radix 2 DIT FFT algorithm.

Or

- (b) Discuss about circular convolution and circular correlation CO1- App (16) property
- 12. (a) Design Butterworth filter using bilinear transformation method CO2- App (16) for the following specifications

$$\begin{array}{ll} 0.707 \leq \left| H(e^{j\omega}) \right| \geq 1.0 & 0 \leq \omega \leq 0.2\pi \\ \left| H(e^{j\omega}) \right| \geq 0.08 & 0.4\pi \leq \omega \leq \pi \end{array}$$

Or

- (b) For the given specification, design a Butterworth high pass filter CO2- App (16) $\alpha_p=3db$, $\alpha_s=15db$, $\Omega_p=1000$ rad/sec and $\Omega_s=500$ rad/sec. Convert the analog transfer function to digital using bilinear transformation.
- 13. (a) Design a FIR filter using hanning window for the specification CO3- App (16) given

$$H_d e^{(jw)} = \begin{cases} 1 & for - \pi/4 \le w \le \pi \\ 0 & for \ w \le \pi/4 \end{cases}$$

 (b) Design a linear phase FIR high pass filter using hamming window CO3- App (16) with a cutoff frequency 0.8π rad/sec using hamming window. Take N=7

14.	(a)	Discuss the coefficient quantization in IIR filter and FIR filter	CO4-U	(16)
		Or		
	(b)	Discuss the effects of finite word length in FIR digital filters	CO4- U	(16)
15.	(a)	Elaborate the Pyramid Algorithm in wavelets.	CO5- U	(16)
		Or		
	(b)	Explain in detail about different types of non-parametric	CO5- U	(16)
		estimation of power spectrum density.		