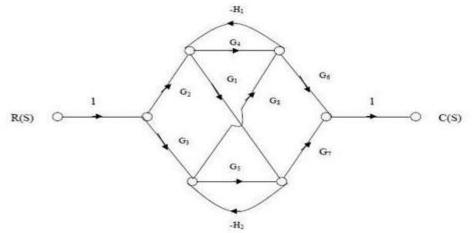

	Α	Reg. No.:										
		Question Paper	r Co	ode:	55]	B03]					
B.E. / B.Tech. DEGREE EXAMINATION, APRIL 2019												
	Fifth Semester											
	Biomedical Engineering											
	15UBM503 - BIO CONTROL SYSTEM											
(Regulation 2015)												
Duration: Three hours Maximum: 100 Ma) Marks					
		Answer ALL	. Que	estio	ns							
		PART A - (10 x	1 =	10 M	arks)						
1.	Zero initial condition for	or a system means										CO1- R
	(a) input reference sign	al is zero										
	(b) zero stored energy											
	(c) initial movement of	moving parts										
	(d) system is at rest and	l no energy is stored in an	y of	its co	ompo	onents	5					
2.	In a signal flow graph,	nodes are represented by	smal	1								CO1- R
	(a) Circles	(b) Squares		(c) Aı	rrows				(d) P	ointe	rs
3.	The transient response of a system is mainly due to									CO2- R		
	(a) inertia forces	(b) internal forces		(c) sto	ored e	nerg	у		(d) fi	rictio	n
4.	The type number of the	control system with G(s)) = k((s+2)	/(s(s	² +2s+	3)					CO2- R
	(a) 0	(b) 1		(c) 2					(d) 3		
5.	. At which frequency does the magnitude of the system becomes zero dB?								CO3- R			
	(a) Resonant frequency			(b) Cut-off frequency								
	(c) Gain crossover frequencies	uency	ncy (d) Phase crossover freq				frequ	iency	r			
6.	The polar plot of a transfer function passes through the critical point(-1,CO3- R0). Gain margin is											
	(a) Zero	(b) -1dB		(c) 1d	B				(d)]	nfini	ty


7.	The magnitude condition for root locus is							
	(a) $ G(s)H(s) = 0$	(b) $ G(s)H(s) = 2$	(c) $ G(s)H(s) =$	1 (d) G(s)H	$ \mathbf{I}(\mathbf{s}) = \infty$			
8.	According to Nyquist stability criterion, where should be the position of all zeros of q(s) corresponding to s-plane?							
	(a) On left half	(b) At the center	(c) On right half	(d) Random				
9.	Physiological control systems, in general, are							
	(a) Optimal	(b) Adaptive	(c) Linear	(d) Param	netric			
10.	Feedback is highly common in physiological systems							
	(a) Embedded	(b) segregated	(c) Positive	(d) None of the a	None of the above			
PART - B (5 x 2 = 10 Marks)								
11.	. Define Transfer Function							
12.	Define Damping ratio				CO2- R			
13.	What are the main advantages of Bode plot?							
14.	Mention the necessary and sufficient condition for stability.							
15.	Draw the block diagram representation of muscle stretch reflux.							
PART – C (5 x 16= 80Marks)								

16. (a) Draw the equivalent mechanical system of the given system. Write the CO1- App (16) set of equilibrium equations for it and obtain electrical analogous circuits using F-V Analogy and F-I Analogy.

Or

(b) Determine the overall gain of the system for the given signal flow graph. CO1- App (16)

17. (a) Determine the time response specifications and expression for output for CO2- App (16) unit step input to a system having the system equation as follows. Assume zero initial conditions.

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 16y = 9x$$

(b) For a unity feedback control system, the open loop transfer function CO2- Ana (16) $G(S) = 10(S+2)/S^2(S+1)$. Find

- (a) Position, velocity and acceleration error constants.
- (b) The steady state error when the input is R(S) where R(S) = $3/S - 2/S^2 + 1/3S^3$.
- 18. (a) Plot the Bode diagram for the following transfer function and obtain the CO3- Ana (16) gain and phase cross over frequencies. G(S) = 10/S(1+0.4S) (1+0.1S).

Or

- (b) The open loop transfer function of a unity feedback system is given by CO3- Ana (16) $G(s) = 1 / s(1+s)^2$, Sketch the polar plot and determine the gain and determine the gain and phase margin.
- 19. (a) Using Routh criterion determine the stability of the system whose CO4- App (16) characteristics equation is $S^4+8S^3+18S^2+16S+5=0$.
 - (b) The characteristic polynomial of a system is, $s^{7} + 9s^{6} + 24s^{5} + 24s^{4} + 24s^{3} + 24s^{2} + 23s + 15 = 0$. Determine the location of roots on s-plane and hence the stability of the system. (16)

20.	(a)	Explain the need for modeling in physiological system. Illustrate with CO5-U	(16)
		suitable examples.	

Or

(b) With neat diagram explain the linear model of Cardiovascular System. CO5- U (16)