A		Reg. No. :											
Question Paper Code: 55A04													
B.E./B.Tech. DEGREE EXAMINATION, APRIL 2019													
Fifth Semester													
Agriculture Engineering													
15UAG504 – HEAT AND MASS TRANSFER FOR AGRICULTURAL ENGINEERING													
(Approved Heat and Mass Transfer Data Book & Steam Tables are allowed)													
(Regulation 2015)													
Duration: Three hours Maximum:100 Mar								arks					
Answer ALL questions													
PART - A $(10 \text{ x } 1 = 10 \text{ Marks})$													
1. In case of liquids and gases, the heat transfer takes place according to(a) Conduction.(b) Convection.(c) Condensation.(d) Rad								CO	1- R				
							on.		((d) R	ladia	tion.	
2.	is	the ratio of ther	mal o	cond	ucti	ivity	and	he	at			CO	1- R
	capacity												
	(a) Heat capacity ratio		(b) Thermal diffusivity										
	(c) Specific heat		(d)) Bic	ot N	umb	er						
3.	The ratio of heat transfer by convection and heat transfer by conduction is called								CO	2- R			
	(a) Reynolds number.		(b)) Pra	ndt	l nur	nber						
	(c) Nusselt number.		(d)) Gr	ash	of nı	imber	r.					
4. The dimensionless numbers involved in Natural co						ion	s/are					CO	2- R
	(a) Grashoff Number	(b) Prandtl number	(c)) Nus	ssel	t Nu	mber	((d) A	ll of	the	abov	e
5.	The emissivity for bla	ck body is										CO	3- R
	(a) 0.	(b) 0.5.	(c)	0.7	5.			((d) 1	•			
6.	In heat exchanger, hot and cold fluid flow in Consame direction.							CO	3- R				
	(a) Counter flow	(b) Parallel flow	(c)) Cro	oss f	low		((d) N	lixed	l flov	w	

7.	Fouling factor is used									
	(a) In heat exchanger design as a safety factor.									
	(b) In case of Newtonian fluids.									
	(c) When a liquid exchanges heat with a gas.									
	(d) In case of non-Newtonian fluids.									
8.	Radiation shield should have									
	(a) High transimissivity(c) Low reflectivity			(b) High conductivity						
				(d) High reflectivity						
9.	The		CO5- R							
	(a) k	.g.	(b) kJ/s.	(c) kg/s.	(d) N.					
10.	The ratio of molecular diffusivity of momentum and molecular diffusivity of mass is called									
	(a) F	fick's law.		(b) Schmidt Number.						
	(c) Scherwood Number.			(d) Eddy diffusion.						
PART - B (5 x 2= 10 Marks)										
11.	Define fins (or) extended surfaces.									
12.	What is difference between free convection and forced convection?									
13.	Define burnout point									
14.	What is meant by pool boiling?									
15.	State Fick's law of diffusion.									
			PART - C(5)	x 16= 80 Marks)						
16.	 (a) A wall of 0.6 m thickness having thermal conductivity of 1.2 CO1- App (W/mK. The wall is to be insulated with a material having an average thermal conductivity of 0.3 W/mK. Inner and outer surface temperature is 1000°C and 10°C respectively. If heat transfer rate is 1400 W/m². Calculate the thickness of insulation. Or 									
	(b) An egg with mean diameter of 4 cm and initially at 25°C is placed CO1- App in a boiling water pan for 4 minutes and found to be boiled to the consumers taste. For how long should a similar egg for same consumer be boiled when taken from a refrigerator at 5°C? Let $K=12 \text{ W/mK}$, $h = 125 \text{ W/m}^2 \text{ K}$, $C = 2 \text{ kJ/kg K}$, $\rho = 1250 \text{ kg/m}^3$.									

17. (a) Air at 25° C flows over a flat plate at a speed of 5 m/s and heated CO2- App (16) to 135° C. The plate is 3 m long and 1.5 m wide. Calculate the local heat transfer coefficient at x= 0.5 m and the heat transferred from the first 0.5 m of the plate.

Or

- (b) Calculate the heat transfer from a 60W incandescent bulb at CO2- App (16) 115°C to ambient air at 25°C. Assume the bulb as a sphere of 50 mm diameter. Also find the percentage of power lost by free convection.
- 18. (a) Two large parallel plates are maintained at a temperature of 900 CO3- Ana (16) K and 500 K respectively. Each plate has an area of 6 m². Compare the net heat exchange between the plates for the following cases: (a) Both plates are black and (b) Plates have an emissivity of 0.5.

Or

- (b) A counter flow double pipe heat exchanger is used to heat water CO3- App (16) from 20°C to 40°C by cooling an oil from 90°C to 55°C. The exchanger is designed for a total heat transfer rate of 59 kW with overall heat transfer coefficient of 340W/m²K. Calculate the surface area required.
- 19. (a) In a counter flow double pipe heat exchanger, water heated from CO4- U (16) 25° C to 65° C by oil with a specific heat of 1.45 KJ/KgK and mass flow rate is 0.9 Kg/s. The oil is cooled from 230° C to 160° C. If the overall heat transfer co-efficient is 420 W/m² °C, Calculate the following: (a) The rate of heat transfer, (b) The mass flow rate of water and (c) The surface area of the heat exchanger.

Or

(b) Calculate the net radiant heat exchange per m² area for two large CO4- Ana (16) parallel plates at temperatures of 427°C and 27°C respectively. Effectiveness of hot plate and cold plate 0.9 and 0.6 respectively. If a polished aluminium shield is placed between them, find the percentage reduction in heat transfer, emissivity of the shield is 0.4

20. (a) Helium diffuses through a plate membrane of 2 mm thick. At the CO5- Ana (16) inner side the concentration of helium is 0.025 Kg mole/m³. At the outer side the concentration of helium is 0.007 Kg mole/m³. What is the diffusion flux of helium through the membrane? Assume diffusion co-efficient of helium with respect to plastic is $1 \times 10^{-9} \text{ m}^2/\text{s}.$

Or

(b) (i)Air at 20°C with a velocity of 3.5 m/s flows over a flat plate. If CO5-U (8) the plate is 0.5 m long, calculate the mass transfer coefficient.

(ii) Determine diffusion rate of water from bottom of a test tube CO5- U (8) of 35 mm diameter and 55 mm long into dry air at 30°C. Take diffusion coefficient of water in air as 0.28×10^{-4} m²/sec